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e, June 23-26, 2008, SeattleModel predi
tive �ow 
ontrol- Invited paper -R. King∗, K. Aleksi
∗, G. Gelbert∗, N. Losse∗, R. Muminovi
∗A. Brunn†, W. Nits
he†, M. R. Bothien‡, J. P. Moe
k‡, C. O. Pas
hereit‡, B. R. Noa
k§,Berlin Institute of Te
hnology, GermanyU. Rist¶ and M. Zengl¶University of Stuttgart, GermanyIn the last two de
ades model predi
tive 
ontrol (MPC) has been shown to be one of themost powerful and versatile 
ontrol methods in pro
ess engineering. With the availabilityof 
onstantly in
reasing 
omputing power and the advent of highly e�
ient optimizationmethods MPC is within rea
h for the use in very fast �ow 
ontrol appli
ations as well.This 
ontribution gives an introdu
tion into MPC and reviews some examples, both insimulation studies and in experimental tests. Although a major advantage of MPC, namelythe in
lusion of 
onstraints is exploited in only one of these �rst appli
ations, the superiorityover other 
ontrol methods be
omes evident. The appli
ations range from the 
ontrol of the�ow around a 
ir
ular 
ylinder, the damping of Tollmien-S
hli
hting waves, the suppressionof thermoa
ousti
 instabilities in a burner to the drag redu
tion of an Ahmed body. Modelsused in these MPC-studies 
omprise 
ontinuous and dis
rete-time, linear and non-linearformulations, thereby showing the versatility of the method.Nomen
lature
A,B,C state-spa
e matri
es J 
ost fun
tional
A amplitude k time index
ai Fourier 
oe�
ient or 
oe�
ient of Q,R weightstime-series models t time
bi 
oe�
ient of time-series models u 
ontrol input ve
tor
cp normalized pressure U velo
ity �eld
e(t) error x, x state ve
tor, streamwise 
oordinate
f, g plane pressure waves y, y input ve
tor, wall normal dire
tion
Gls, Rds, Rus transfer fun
tions Φ phase of �ow
H horizon τ time-delayI. Introdu
tionMu
h has been said already about the bene�ts of a
tive �ow 
ontrol in 
omparison or in addition to passivemeans16,24. To 
ope with un
ertainties, 
oming either from external disturban
es or from an in
ompleteknowledge of the �ow, 
losed-loop �ow 
ontrol is a must in a real-world appli
ation. Open-loop 
on
epts willfail or will yield at most sub-optimal results in su
h 
ases of un
ertainty. For the synthesis of 
losed-loop
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�ow 
ontrollers a variety of methods is available starting from model-free approa
hes to pro
edures whi
hdire
tly use a model of the system to be 
ontrolled inside the 
ontrol law.Model-free approa
hes as extremum- and slope-seeking 
ontrol4 perform an online gradient-based sear
hto minimize or maximize a 
ertain 
ost fun
tional7,44. The determination of the gradient is done by meansof a sinusoidal pertubation of the plant input. As the gradient 
an only be extra
ted when the pertubationis slower than the slowest time 
onstant of the pro
ess, these methods are very slow. They range in the orderof 10 to 100 
hara
teristi
 time units of the �ow system. However, extremum and slope seeking 
ontrollersare very easy to apply, and, if tuned 
orre
tly, very robust. We have su

essfully used these gradient-basedmethods in a variety of �ow 
ontrol 
on�gurations su
h as appli
ations in high-lift, drag-redu
tion of di�erentblu�-bodies, pressure re
overy in di�usors, damping of thermoa
ousti
 instabilities in a burner, mixing, andnoise redu
tion in turboma
hinery. A review of some of these appli
ations 
an be found in King et al.25.A detailed study 
on
erning a high-lift 
on�guration with a swept 
onstant 
hord wing is given in Be
keret al.8. Methods to substantially a

elerate extremum seeking 
ontrollers by means of an estimation of thegradient with a Kalman �lter 
an be found in Henning et al.21.Another 
lass of 
ontrol synthesis methods is based on a linear bla
k-box des
ription of the �ow. In the�rst pla
e, the dynami
 relation between plant inputs and outputs is des
ribed by so-
alled transfer fun
tionsin the Lapla
e- or z-domain. As �ow systems are inherently nonlinear, this input-output point of view willonly be valid in the vi
inity of the operating 
onditions used to derive the model. Therefore, a family ofbla
k-box models has to be identi�ed for di�erent operating points and, then, has to be used in a robust
ontroller synthesis. Popular methods 
omprise H∞- or QFT-design whi
h yield 
ontrollers appli
able fora larger region of operation. Experimental �ow 
ontrol tests for the spanwise non-
onstant 
ontrol of there
ir
ulation length behind a ba
kward fa
ing step or the drag redu
tion of a 3D blu� body 
an be foundin Henning et al.23 and Henning et al.22, respe
tively. The velo
ity of these methods is in the region of 1to 10 
hara
teristi
 time units of the �ow system. From a 
ontrol point of view this is still slow. However,this is not due to the 
ontrol methods applied, but often a result of the sensor te
hnique used to measurean appropriate on-line surrogate value indi
ating the state of the �ow. The out
ome of robust and reliablesensors very often have to be averaged, thereby redu
ing the bandwidth of the 
losed-loop system.The fastest and/or most e�
ient 
losed-loop system response 
an be obtained from physi
ally motivated
ontrollers. These are based upon or motivated by redu
ed-order models su
h as Galerkin33,34,40,41 or vortexmodels. In Pastoor et al.35 a vortex model is used to motivate a one-sided a
tuation of a 2D blu� bodyyielding the same drag redu
tion as a two-sided version, but with an energy saving of more than 40%. InGerhard et al.18 a Galerkin model is employed to synthesize a nonlinear 
ontroller based on physi
al insightof the system. The obtained least-order Galerkin model des
ribes the vortex shedding behind the 
ir
ular
ylinder with just three dynami
al states. The 
ontroller produ
es a robust 
losed-loop performan
e whenapplied to a dire
t numeri
al simulation of the Navier-Stokes equation. In King et al.26 di�erent nonlinear
ontrollers are 
ompared for this system. Glauser et al.19 build up a Galerkin system to derive a 
ontrol lawfor a lift 
ontrol appli
ation. Siegel et al.41 dampen the von Kármán vortex street behind a 
ylinder in anexperiment with a similar approa
h. Depending on the �ow measurements available to 
lose the loop, thesemethods give rise to a 
losed-loop bandwidth in the order of the open-loop bandwidth of the �ow system.In all of the above mentioned approa
hes the manipulated variable is 
al
ulated based upon the a
tualpro
ess output, and, more or less dire
tly, on a pro
ess model. Negle
ting the very slow extremum seekingapproa
hes, the 
ontrollers are set up in a way to obtain a 
ertain 
losed-loop dynami
s without aiming atan optimal result nor respe
ting system 
onstraints whi
h may show up at the a
tual time instant or in thefuture. When a 
onstrained optimization-based 
ontrol s
heme is formulated, instead, even better results
an be obtained. This is shown in numerous a
ademi
 and espe
ially large s
ale industrial appli
ations inpro
ess industry20,37,38. The basi
 idea of model predi
tive 
ontrol (MPC) is a repeated optimization over afuture 
ontrol input traje
tory. As su
h an optimization 
an be easily formulated with or without 
onstraints,for linear or nonlinear, for time-
ontinuous or dis
rete-time models, for single-input single-output (SISO) ormultiple-input multiple output (MIMO) systems, MPC presents an extremely versatile method. However, assoon as 
onstraints are involved and/or the model is nonlinear, the optimization has to be solved numeri
ally.As a 
onsequen
e of the numeri
al burden involved in solving the optimization problem, MPC was mainlyrestri
ted to slow pro
esses su
h as found in 
hemi
al or bio
hemi
al industries. For experimental �ow 
ontrolappli
ations only one burner study17 is known up to now whi
h will be re
apitulated below. However, newe�
ient optimization algorithms open the route for MPC for a wider 
lass of �ow 
ontrol appli
ations aswell. In a re
ent study, a 
onstrained MPC was applied in an engine 
ontrol problem with a sampling rate2 of 19Ameri
an Institute of Aeronauti
s and Astronauti
s Paper 2008-3975



of 200 Hz15. A

ording to the authors, this frequen
y 
an even be in
reased (personal 
ommuni
ation).In this paper, a short introdu
tion into MPC is given, 
omplemented by a review of a 
ouple of di�erentMPC �ow 
ontrol appli
ations. This sele
tion 
omprises studies with linear and nonlinear, with 
ontinuousand dis
rete-time models, with simulation studies and experimental tests. The paper is organized as follows:The basi
 idea of MPC is re
apitulated in se
tion II. Appli
ations to various 
on�gurations are given inse
tion III. II. Model predi
tive 
ontrolMPC is best explained by means of �gure 1. The basi
 idea of MPC is to 
al
ulate future 
ontrol movessu
h that some performan
e 
riterion is optimized. In doing so, system 
onstraints referring to states x,outputs y and manipulated variables u are respe
ted. For this purpose, the future 
ontrol input uf (t) isparameterized by, for example, pie
e-wise 
onstant traje
tories over a dis
rete-time horizon Hc. Usually, the
�
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uh

uf

k
k + 1 k + 2 k + Hc k + Hp tFigure 1. Basi
 s
heme of MPC for a SISO system. In 
ontrast to the standard �uid dynami
s nomen
lature, 
ontrolengineering naming 
onventions are used here. The manipulated variable is denoted by u and the system output by y.Indi
es f and h refer to the future and the past, i.e. history, respe
tively. The referen
e signal r is spe
i�ed startingfrom k + 1, be
ause the a
tual system output y(k) 
annot be 
hanged by the a
tual or future inputs.sampling period h for the pie
e-wise 
onstant 
ontrol input is �xed. It 
oin
ides with the sampling period ofthe model if a dis
rete-time model of the pro
ess is used. In the study of the von Kármán street it 
oin
ideswith half the period of the �ow. A variable sampling period, however, is possible as well, see e.g.43.Let us assume that the a
tual dis
retized time instant is given by t = k. Hen
e, t < k represents thepast and t > k the future. The a
tual 
ontrol input for t = k, i.e. u(k) = uf (k), and future 
ontrol inputs

uf (k + 1), uf (k + 2), . . . are now determined su
h that the system output y
f
(k + i) is driven ba
k to areferen
e traje
tory r(k + i) for H1 ≤ i ≤ Hp in an optimal fashion. If a system with a pure time-delay dis 
onsidered, the output y will not be in�uen
ed by the a
tual input u(k) before t = k + d. In su
h 
ases,

H1 should be equal or larger than d. Even without time-delays, a H1 > 1 might be bene�
ial for the overallperforman
e.Due to the pie
e-wise 
onstant 
ontrol input a �nite parametri
 optimization problem results with opti-mization or design variables uf (k), uf (k +1), . . . . The predi
tion horizon Hp is usually 
hosen (mu
h) largerthan the 
ontrol horizon Hc in whi
h 
ontrol moves are allowed. A larger predi
tion horizon in 
omparison tothe 
ontrol horizon is bene�
ial for 
losed-loop stability. Otherwise, a terminal penalty has to be in
luded38.A possible 
riterion or quality fun
tion may read
J =

Hp
∑

i=H1

||r(k + i) − y
f
(k + i)||Q +

Hc
∑

i=0

||uf (k + i)||R
!
= min , (1)3 of 19Ameri
an Institute of Aeronauti
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in whi
h Q and R are symmetri
 weighting matri
es used in the norms || · ||, i.e. ||z||S = zT Sz. Both weightsmay depend on the time index k + i as well. With the weights a di�erent importan
e of manipulated values
uf (k+i) and future errors between referen
e r(k+i) and system output y

f
(k+i) is a

ounted for. If 
hangesin the 
ontrol input ∆uf (k + i) = uf (k + i)−uf (k + i−1) are 
riti
al to avoid too large a
tuator amplitudesfrom one sampling instant to the next, these 
hanges 
an be in
luded in eq. (1) readily. Likewise, if thefuture 
ontrol input for t > k + Hc is not zero, its 
ost 
an be in
luded as well. When 
onstraints have tobe 
onsidered, these 
an be dealt with via Lagrange operators or via penalty fun
tions to name just twopossibilities.So far it was assumed that the optimal 
ontrol input 
al
ulated after pro
essing the measurement obtainedat t = k 
ould be immediately applied at the same time instant. If the numeri
al burden is high, however,the measurements taken at t = k are used to 
al
ulate the next 
ontrol moves starting from t = k + 1. Insu
h a 
ase, the se
ond summation in eq. (1) would start at i = 1.In MPC, just the �rst 
ontrol move uf (k) of the 
al
ulated optimal input traje
tory is applied to theplant. To rea
t almost immediately when the next measurement y for t = k + 1 ist obtained, preparatory
al
ulations 
an be done in the period from k to k + 1. Then, the optimization starts from the beginningat the next sampling instant. By this, the in�uen
e of unknown disturban
es and model errors is a

ountedfor as these un
ertainties show up in the next value of the measured output variable y(k +1). This repeatedsolution of an optimization problem has led to an alternative name of MPC, namely re
eding horizon optimal
ontrol.In the general 
ase, when the pro
ess model is nonlinear, a numeri
al solution of the optimization problemhas to be done. This leads to a nonlinear model predi
tive 
ontroller (NMPC). A similar approa
h has to betaken for linear models in 
ase of equality or inequality 
onstraints whi
h have to be met. This numeri
alsolution, however, is responsible for the large numeri
al burden involved in solving (N)MPC problems. Thebeauty of the (N)MPC-method rests in its unifying framework. Irrespe
tive of the kind of model, linear ornonlinear, 
ontinuous or dis
rete-time, SISO or MIMO, and irrespe
tive or the optimization problem to besolved, un
onstrained or 
onstrained, the same prin
iple 
an be used to derive a 
ontrol signal.To show the most simplest version of a MPC-s
heme whi
h leads to an expli
it 
ontrol law, a 
oupleof assumptions will be made in the following. It is assumed that 1) the pro
ess model is given as a linear,dis
rete-time state-spa
e model, 2) the plant output y(k) at time k will not dire
tly depend on the 
ontrolinput u(k), i. e. there is no dire
t feed through, 3) the time for evaluating the 
ontrol law obtained 
an benegle
ted, and 4) no 
onstraints are 
onsidered.II.A. MPC formulation for linear un
onstrained problems in state-spa
eEvery linear system 
an be des
ribed by a state-spa
e model of the form

x(k + 1) = Ax(k) + Bu(k) (2)
y(k) = Cx(k) (3)in whi
h x, u and y represent the internal state of the pro
ess, the 
ontrol input and the pro
ess output,respe
tively. Column ve
tors are denoted by small, underlined symbols. Matri
es, su
h as the dynami
matrix A, the input and the output matri
es B and C, respe
tively, are given in bold 
apital letters. Atime-dependen
e of these matri
es 
an be in
luded. Dimensions are x ∈ R

n, u ∈ R
p, y ∈ R

q, A ∈ R
n×n,

B ∈ R
n×p, C ∈ R

q×n.Starting from time k, the future development of the pro
ess 
an be predi
ted exploiting eq. (2). If astate predi
tion made at t = k for t = k + j is denoted by x(k + j|k), it follows
x(k + 1|k) = Ax(k) + Bu(k)

x(k + 2|k) = Ax(k + 1|k) + Bu(k + 1)

= A2x(k) + ABu(k) + Bu(k + 1) (4)...
x(k + Hp|k) = AHpx(k) +

Hp−1
∑

i=0

AiBu(k + Hp − 1 − i) .4 of 19Ameri
an Institute of Aeronauti
s and Astronauti
s Paper 2008-3975



Hen
e, the future or predi
ted output for k + j reads
y

f
(k + j) = y(k + j|k) = CAjx(k) +

j−1
∑

i=0

CAiBuf (k + j − 1 − i) (5)in whi
h u was repla
ed by uf as future values of the 
ontrol input are addressed. All future outputs willnow be 
on
atenated in y
p

= (yT (k + 1|k) yT (k + 2|k) . . . yT (k + Hp|k))T , where T denotes the transpose ofa ve
tor. A

ordingly, up = (uT
f (k) uT

f (k + 1) . . . uT
f (k + Hc) . . . uT

f (k + Hp))
T with uf (k + j) = uf (k + Hc)for j = Hc + 1,Hc + 2, . . . ,Hp to a

ount for a 
onstant manipulated variable for the last se
tion of thepredi
tion horizon Hp.All future outputs inside the predi
tion horizon 
an now be written as

y
p

= Apx(k) + Bpũp (6)with
Ap =























CA

CA2...
CAHc...
CAHp























, Bp =





























CB O . . . O

CAB CB . . . O... ... . . . ...
CAHcB CAHc−1B . . . CB

CAHc+1B CAHcB . . . CB + CAB... ... . . . ...
CAHp−1B CAHp−2B . . .

∑Hp−Hc−1
i=0 CAiB





























, ũp =













uf (k)

uf (k + 1)...
uf (k + Hc)











(7)In the new variables y
p
, ũp, the 
ost fun
tional, eq. (1), reads with rp = (rT (k+1) rT (k+2) . . . rT (k+Hp))

T

J = (rp − y
p
)T Qp(rp − y

p
) + ũT

p Rpũp

= (rp − Apx(k) − Bpũp)
T Qp(rp − Apx(k) − Bpũp) + ũT

p Rpũp . (8)The blo
k diagonal matri
es Qp and Rp 
onsist of Q and R matri
es from eq. (1) on the main diagonal if
H1 = 1. For H1 > 1, the �rst entries in the main diagonal are zero. Equating dI/dũp = 0T as a ne
essaryand su�
ient 
ondition for an extremum yields for the future 
ontrol input

ũp = (BT
p QpBp + Rp)

−1BT
p Qp(rp − Apx(k)) . (9)As no 
onstraints are 
onsidered, a 
losed form of the 
ontrol law is obtained. From ũp = (uf (k) uf (k +

1) . . . ) only the �rst entry, i.e. u(k) = uf (k), is applied to the pro
ess. Then, the optimization starts fromthe beginning using the measurement y(k + 1) to determine a new state x(k + 1), and so forth. To obtaina state estimate, a model-based measuring te
hnique su
h as a Kalman �lter13 has to be applied if the fullstate ve
tor x(k + 1) 
annot be measured.II.B. Alternative formulationsAn alternative formulation 
an be given starting from an input-output des
ription of the system in the z-domain or applying the so-
alled shift operator q−1 to a time-series model. In su
h a 
ase, no state appearsin the formulas but histori
 values y
h
and uh, see �gure 1. An example will be given in the burner studybelow. However, for long predi
tion horizons a formulation in state-spa
e is superior from a numeri
al pointof view.In the �rst example of a �ow past a 
ylinder a nonlinear model in 
ontinuous time serves for predi
tion. Itis solved numeri
ally by a forth-order-Runge-Kutta s
heme. State estimation is done employing an extendedKalman �lter. Moreover, input 
onstraints are 
onsidered as well. The optimization problem is solvednumeri
ally by applying the lsqnonlin routine from MATLABr, i. e. by a nonlinear least squares method,for more details see2. For the redu
tion of the drag of a blu� body in the last example a linear state-spa
emodel is used. However, instead of uf , 
hanges in uf are introdu
ed in eq. (1).5 of 19Ameri
an Institute of Aeronauti
s and Astronauti
s Paper 2008-3975



III. Results(N)MPC will now be applied to di�erent �ow 
ontrol problems using di�erent model formulations. Inthe �ow past a 
ir
ular 
ylinder, see se
tion III.A, a NMPC will 
learly outperform the best 
ontrollerfound in previous simulation studies26. Se
tion III.B summarizes �rst results of the damping of Tollmien-S
hli
hting waves exploiting a Galerkin approximation. The last two se
tions, III.C and III.D, are devotedto experimental MPC-studies for a burner and a blu� body, respe
tively.III.A. 2D �ow around a 
ir
ular 
ylinderThe present 
ase study fo
uses on the two-dimensional laminar �ow around a 
ir
ular 
ylinder, see �gure 2.The Reynolds number Re is 
hosen well above the 
riti
al Reynolds number 47, see,31 for the onset of 2D
s e n s o rA )  v o l u m e  f o r c e

B )  c y l i n d e r  o s c i l l a t i o nFigure 2. Prin
ipal sket
h of the a
tuated 
ylinder wake. The �gure displays the streamlines of the natural �ow arounda 
ir
ular 
ylinder with diameter D = 1 (solid 
ir
le). A
tuation is provided by transverse 
ylinder os
illation or by atransverse volume for
e in the grey 
ir
le. The �ow state is sensed with a hot-wire anemometer, lo
ated at a typi
alposition. Su

ess of 
ontrol is monitored in the observation region −5 < x < 15, −5 < y < 5, with x = y = 0 in the 
enterof the 
ylinder, see �gure 4 as well.vortex shedding and well below the 3D instability around 180. The 
ontrol goal is to suppress the stable 2Dvortex shedding at that Reynolds number.III.A.1. Galerkin model for predi
ting the future developmentA Karhunen-Loève (KL) de
omposition of the una
tuated �ow shows that 96% of the turbulent kineti
 energy
E 
an be resolved with the �rst 2 KL modes, see18 and34. To des
ribe the transient from the (unstable)steady state solution, Us, of the Navier-Stokes equation (NSE) to the vortex shedding mode, Ui, i = 1, 2,a third so-
alled shift mode U∆ has to be in
luded in the Galerkin approximation as a key enabler for asu

essful approximation34. U∆ a

ounts for the di�eren
e between the mean and steady �ow. With these3 modes, a Galerkin approximation reads

U(x, y, t) = U s(x, y) +

2
∑

i=1

ai(t)U i(x, y) + a3(t)U∆(x, y) (10)in whi
h U(x, y, t) des
ribes the spa
e- and time-dependent 2D velo
ity pro�le. For more details see34.The term a1(t)U1(x, y) + a2(t)U2(x, y) approximates the os
illatory �u
tuation asso
iated with the vonKármán vortex street due to a nearly sinusoidal behavior of the Fourier 
oe�
ients a1(t) and a2(t).Two di�erent a
tuators are sket
hed in �gure 2, namely a transverse os
illations of the 
ylinder and avolume for
e. The se
ond approa
h will be 
onsidered in this paper. A pra
ti
al implementation may bedone with a magneto-hydrodynami
 for
e. The �ow state is sensed with a hot-wire anemometer, lo
ated ata typi
al position, see �gure 2. As a result, a SISO set-up with one input and one output is 
onsidered.In
luding the volume for
e in the momentum equation leads to the following modi�ed Navier-Stokesequation
∂U

∂t
+ (U ·∇)U = −∇p +

1

Re
△U + bu . (11)The 
ontrol input u ∈ R1 des
ribes the amplitude of the for
ing on a 
ompa
t support given by b in thearea shown in �gure 2. A Galerkin system as a low order model is derived by proje
ting the NSE onto themodes and then applying a Krylo�-Bogoliubov ansatz, see34. The resulting Galerkin system has a more6 of 19Ameri
an Institute of Aeronauti
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s Paper 2008-3975



simple stru
ture in polar 
oordinates. With a1 = A cos Φ, a2 = A sin Φ the low order model is given by






Ȧ

Φ̇

ȧ3






=







(σr − βa3)A

ω + γa3

αA2 − σ3a3






+







gc cos (Φ − θ)

−(gc/A) sin (Φ − θ)

0






u . (12)As a result, the state ve
tor reads x(t) = (A(t) Φ(t) a3(t))

T . It should be pointed out that the modelparameters α, β, γ, σr, σ3, ω, and gc, are obtained from a proje
tion from an open-loop referen
e simulation.This may impose a major 
hallenge when a 
ontroller is employed in a Navier-Stokes simulation. The lowdimensional model is only valid in the vi
inity of the operating 
onditions whi
h were used to derive the PODmodes. To a

ount for this limited validity, Gerhard et al.18 suggested that the 
ontrol should not drive thesystem too far away from the manifold des
ribed by eq. (12). To this end, they proposed a �rst nonlinear
ontrol law whi
h is based on physi
al insight, see �gure 3. In this 
ontrol law a pie
e-wise 
onstant 
ontrol
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Figure 3. Fourier 
oe�
ients ai obtained in a 
losed-loop 
ontrolled DNS by applying the 
ontroller based on physi
alintuition from18 (left) and NMPC (right). State estimation is done with an extended Kalman �lter. The su

ess of the
ontrol is observed by a2

1
+ a2

2
whi
h des
ribes the major part of the turbulent kineti
 energy.input u is applied. The magnitude of u is 
al
ulated su
h that the amplitude of the os
illation de
reases,i.e. Ȧ < 0, see eq. (12). Its sign is syn
hronized with cos (Φ − θ). By this, the mean impa
t on Φ̇des
ribing the harmoni
 vortex shedding is minimized, as the right hand side of this equation is shifted by90◦ with respe
t to the 
ontrol input. In King et al.26 a simpler version of this 
ontrol law was found and
ompared to di�erent formally derived nonlinear 
ontrollers. Examples 
omprise input-output linearization,ba
k-stepping, Lyapunov-based approa
h, et
. None of the formal methods 
ould outperform the physi
allymotivated 
ontroller whi
h was named energy-based 
ontrol. In a later improvement2, ba
k-stepping andLyapunov-based approa
h resulted in better performan
es, though. However, as these methods are moreinvolved, the energy-based 
ontroller will serve as a referen
e here.To relax the problems 
oming from a limited validity of the model, an extended Kalman �lter for stateestimation will be implemented in the 
losed loop des
ribed below. By this, part of the model un
ertainties
an be a

ounted for when the system is driven away from the situation for whi
h the POD modes weredetermined.III.A.2. Closed-loop 
ontrolFor the well-known ben
hmark of the �ow past a 
ir
ular 
ylinder, a NMPC 
ontroller is build next. Thepredi
tion in the NMPC algorithm is based on eq. (12). As no experimental set-up is available, the obtained
ontrol law is tested in simulations studies using a dire
t numeri
al simulation. The simulations are performedon a grid with 8712 nodes. For state estimation based on the velo
ity measurement depi
ted in �gure 2, anextended Kalman �lter is applied. Details 
an be found in Aleksi
 et al.2.A very simple 
ost fun
tional is used here instead of eq. (1)
J =

∫ t+Hp

t

e2(l)dl with e(t) = r(t) − â1 , (13)7 of 19Ameri
an Institute of Aeronauti
s and Astronauti
s Paper 2008-3975



i.e. the 
ontrol e�ort is negle
ted. The s
alar referen
e r(t) is 
hosen as a sinusoidal signal with exponentiallyde
reasing amplitude. This 
hoi
e is motivated by the limited validity of the low dimensional Galerkin system.The variable â1(t) denotes the estimated value of the state variable a1(t). To make the optimization problemeasier, we use even more physi
al knowledge about the pro
ess. From the physi
ally motivated 
ontroller itis known that good results are obtained when a pie
e-wise 
onstant u is syn
hronized with cos(Φ− θ). Thisknowledge is exploited here as well. No arbitrary sampling period h, see �gure 1, is 
hosen, but one thatexa
tly mat
hes the physi
s of the pro
ess. Inside a sampling period, uf is 
hosen to be 
onstant.To respe
t the vaildity of the model, the 
al
ulated future 
ontrol inputs are 
onstraint to |uf (t+l)| < 0.1.For more details see3. A 
omparison in �gure 3 shows the superiority of NMPC whi
h is mu
h faster thanenergy-based 
ontrol and leads to a re
ir
ulation zone of length 5.2 in 
ontrast to 4.1 for the energy-based
ontrol. With no other 
ontroller using the very same measurement information and the same a
tuation
on
ept su
h good results were found in King et al.26. Even with the improved versions of the ba
ksteppingand Lyapunov-based 
ontrollers in2, a poorer performan
e was obtained. Figure 4 shows a plot of thestreamlines of the una
tuated and the a
tuated 
ase with the NMPC 
ontroller at t=165. The dampinge�e
t of the a
tuation and the signi�
ant mitigation of the instability is 
learly visible in the observationregion.
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Figure 4. Left: Una
tuated �ow. Right: A
tuated �ow with an NMPC 
ontroller shown for t = 120. The �gures displayiso
ontours of the stream-wise velo
ity 
omponent U. Negative values are indi
ated by thinner 
urves and show theextent of the re
ir
ulation region.III.B. Damping of Tollmien-S
hli
hting wavesThe �nal goal of this study will be the damping of Tollmien-S
hli
hting (TS) waves to delay transition froma laminar to a turbulent regime. Sturzebe
her and Nits
he42 performed an a
tive 
an
ellation of Tollmien-S
hli
hting (TS) instabilities on a wing using multi-
hannel sensor a
tuator systems to delay transition. The
ontrol law is based on a high order �ltered x-LMS method. With an error and a referen
e sensor a 
ontrolinput is 
al
ulated su
h that at the lo
ation of the error sensor a signi�
ant mitigation of the TS waves isobtained, see as well Wu and Breuer.45 Evert et al.14 use a nonlinear bla
k-box model based on Volterra�lters for the same purpose. A similar attenuation of the instability in an experimental wind-tunnel test 
anbe obtained using a signi�
antly simpler approa
h. In this 
ase, experiments with extremum seeking 
ontrol- whi
h was roughly explained in se
tion I - give rise to an attenuation of the rms-value of surfa
e hotwiremeasurements of > 60% when arti�
ial TS waves are introdu
ed (unpublished results).In this study, damping will be performed either by syntheti
 jet a
tuators or by a
tively 
ontrolled �exiblewalls. With both set-ups, �rst promising results are obtained in experiments. When sta
ked syntheti
 jeta
tuators are used, sensors 
an be pla
ed in between a pair of a
tuators, whereas in the 
ase of a �exiblewall measurements are possible only in front and after the �exible wall segment. This latter more di�
ultsituation will be 
onsidered in the following. As true TS waves appear in pa
kets (whi
h we are able to dete
t)and as these pa
kets 
onsist of TS waves with a spe
trum of di�erent frequen
ies, these �rst investigationswill fo
us on a more simple situation. By arti�
ially introdu
ing harmoni
 pertubations in an upstreamse
tion, e.g., by a syntheti
 jet a
tuator as well, a 
ontinuous TS wave with a �xed frequen
y is triggered.Con
erning the appli
ation of MPC to dampen TS waves only preliminary results 
an be given here.Therefore, only simulation studies are 
onsidered. The simulation is performed with a two dimensional DNSsolver, see Rist and Fasel39 and27. This solver 
omputes the �ow on a 850x90 re
tilinear grid over an areaof 0.683865 to 4.6399 non-dimensional units in x and 0 to 0.0956 in y. This 
orresponds to a displa
ement-thi
kness Reynolds-number of 450 to 1180 in x. It is assumed that a wall-normal velo
ity 
an be measured8 of 19Ameri
an Institute of Aeronauti
s and Astronauti
s Paper 2008-3975
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Figure 5. Domains 
onsidered for the damping of TS waves. Subregions I,II and III are used for POD and Galerkin-proje
tion. A bla
k-box model is identi�ed for the e�e
t of a
tuation on subregion II. x represents streamwise, ywall-normal dire
tion.at the lo
ations given in �gure 5. The y position is 
hosen for ease of 
alibration, as this is the v-velo
itypro�le's maximum. In experiments, however, it was already shown that TS waves 
an be estimated as wellwith surfa
e hotwires (unpublished results).In the a
tuation strip, i.e. subregion II, the boundary value of the wall-normal velo
ity is set by a
ontroller. This has a similar e�e
t as a wall displa
ement, as the �ow rea
ts to the velo
ity pro�le pres
ribedat the wall. The wall velo
ity pro�le in streamwise dire
tion in the a
tuation strip, see �gure 5, is restri
tedto a half-sine as fun
tion of x with a time-variable amplitude to mat
h membrane displa
ements in laterexperiments. In the perturbation region upstream, disturban
es are seeded to trigger arti�
ial TS waves.This is done by setting appropriate boundary 
onditions.III.B.1. Galerkin model for predi
ting the future developmentA Galerkin approximation of the 2D �ow over a �at plate is used similar to the 
ir
ular 
ylinder study shownbefore to derive a low dimensional model. A major 
hallenge in 
reating the low dimensional Galerkin systemis, as always, the in
lusion of the 
ontrol input. As modes Ui(x,y), su
h as POD modes, des
ribe globale�e
ts, the in
lusion of a lo
al a
tuation is di�
ult. To this end, a new approa
h is proposed here.In a �rst step, POD modes are determined for the una
tuated 
ase for the whole region 
overing subregionsI, II and III, see �gure 5, when TS waves are triggered by the pertubation upstream. Note that the areasdire
tly at the wall (5 
losest DNS nodes) and 
lose to the perturbation have been omitted from the PODbe
ause the wall region`s steep gradients negatively a�e
t the 
al
ulation of the Galerkin proje
tion. Likewise,as 
lean TS waves are only developed some distan
e downstream of the pertubation strip, this part is notused either. Figure 6 displays the �rst two most energeti
 modes.From the modes derived, a Galerkin proje
tion is performed to obtain a Galerkin system des
ribing thetime evolution of the Fourier 
oe�
ients, see se
tion III.A. These Fourier 
oe�
ients will be named a
(u)
i (t)as they are obtained from an una
tuated situation. The resulting Galerkin system is further modi�ed usingphysi
al insight to o�set numeri
al errors. For example, the produ
tion terms 
al
ulated by the proje
tionare set to zero, as they only arise from numeri
al errors. As no a
tuation is used in the snapshots fromwhi
h the modes are derived, this Galerkin system des
ribes the evolution of the una
tuated �ow`s Fourier
oe�
ients des
ribing TS waves only.In the next step, di�erent a
tuation signals u(t) are applied in the simulation. This simulation will yieldexperiments for a system identi�
ation. It is performed without triggering TS waves with the upstreampertubation. The obtained snapshots of the velo
ity pro�le of the �ow are then proje
ted onto subregionII of the modes found in the �rst step. This proje
tion resulting in a
tuated Fourier 
oe�
ients a

(a)
i (t) isonly done in subregion II, as no upstream e�e
t of the a
tuation 
an be observed, and the downstream e�e
toutside the a
tuation area is 
onve
tive. Thus, we 
on
entrate on the e�e
t on subregion II.Now, system identi�
ation methods are used to derive a bla
k-box model des
ribing the relation between9 of 19Ameri
an Institute of Aeronauti
s and Astronauti
s Paper 2008-3975



Figure 6. Most energeti
 POD-modes for the �ow over a �at plate. The normalized wall-normal velo
ity 
omponent isshown as a fun
tion of the streamwise and wall-normal 
omputation nodes for subregions I, II and III, i.e. ex
ludingthe 5 
losest DNS nodes to the wall. A non-equidistant spa
ing is used for the nodes.applied 
ontrol input u(t) and the time evolution of the �rst two a
tuated Fourier 
oe�
ients a
(a)
1 (t) and

a
(a)
2 (t). It should be noted that still the same POD modes are assumed to be valid, even though only a 'lo
al'part of them is used. Thus, the derived e�e
t on the 
oe�
ients is also only lo
al. A state-spa
e model isidenti�ed using a predi
tion error method from the MATLABr system identi�
ation toolbox.If TS waves are triggered upstream by the pertubation and an a
tuation signal u(t) is applied in thea
tuation region at the same time, the overall Fourier 
oe�
ients obtained for subregion II are given by asuperposition, i.e. ai(t) = a

(u)
i (t) + a

(a)
i (t). This is 
on�rmed by simulation studies. Hen
e, a 
ombinationof the two models, Galerkin system and bla
k-box model, 
an be used to estimate the �ow state in thea
tuation region. To improve this estimation, the state of the Galerkin system is 
orre
ted by an extendedKalman �lter using the two sensors in subregion I.Based on an a
tual estimate of the �ow state, a predi
tion of the future development is 
al
ulated next.In the un
ontrolled 
ase, the Galerkin system, i.e. a

(u)
i (t), des
ribes how this future evolution would looklike. Theoreti
ally, the negative value of this traje
tory a

(u)
i (t) 
ould be used as a referen
e input r(t) forthe bla
k-box model. If a model predi
tive 
ontroller is now able to synthesize a 
ontrol input u(t) su
h thatthe response of the a
tuated system a

(a)
i (t) equals the negative value of the una
tuated 
ase, a superpositionwould lead ai(t) = 0. However, su
h an approa
h would not be physi
al. Therefore, r(t) = −Ka

(u)
i (t) is
hosen with a small K, e.g. K = 1/65.Based on this idea, a MPC s
heme is build. The presented results are for a predi
tion and 
ontrol horizon

Hp = 5, Hc = 1, respe
tively.Using this 
ontrol s
heme, the amplitude of disturban
e of the �ow 
an be redu
ed by > 80% at x/dx =10 of 19Ameri
an Institute of Aeronauti
s and Astronauti
s Paper 2008-3975



Figure 7. Snapshot of the disturban
e velo
ity �eld without (top) and with a
tuation (bottom), see �gure 6 for moreexplanations.
850 (see �gure 7). This value 
ould be further in
reased by mat
hing the a
tuation pro�le perfe
tly to thewavelength of the TS waves, but this was not the fo
us of this study. Rather, it is shown that MPC 
an beused for TS waves even without perfe
t a
tuators or measurements in the a
tuated region.III.C. Control of thermoa
ousti
 instabilities in a burnerLean-premixed 
ombustion o�ers a way to meet restri
tive, low emission levels for modern gas turbines.However, the leaner a 
ombustion system operates the more it is prone to suddenly o

urring large pressureos
illations11,28,36. These so-
alled thermoa
ousti
 instabilities arise from the intera
tion of unsteady heatrelease and the a
ousti
 �eld in the engine. If the two me
hanisms interfere with an unfavorable phaserelation, high amplitude pressure pulsations o

ur, whi
h have a detrimental e�e
t on the 
ombustion pro
ess.A
tive 
ontrol 
an be used to suppress thermoa
ousti
 instabilities. Model-based 
losed-loop 
ontrol of
ombustion instabilities was shown to be e�e
tive in redu
ing the pressure os
illations 
onsiderably. Morgansand Dowling30, e.g., used Nyquist te
hniques to build a stabilizing 
ontroller. The simplest form of 
losed-loop 
ontrol is a phase-shifted pressure feedba
k by the so-
alled phase-shift or time-delay 
ontroller12. Here,the 
ombustor pressure is fed ba
k via a
ousti
 or fuel modulating a
tuators. In the Lapla
e domain the
ontrol law reads C(s) = Ke−sτ (K being the gain and τ the delay). The two 
ontrol parameters K and τare either tuned empiri
ally or optimized by an adaptive s
heme5,29.The 
ombustor test rig 
onsidered in this investigation is shown s
hemati
ally in �gure 8. A swirl-stabilized burner, generating an aerodynami
ally stabilized �ame, is mounted in a 
ylindri
al sili
a glass
ombustion 
hamber. The usual operating range 
omprises equivalen
e ratios from φ = 0.5 to stoi
hiometri
level and a thermal power of about 80-240 kW. Several 1/4" 
ondenser mi
rophones are mounted up- and11 of 19Ameri
an Institute of Aeronauti
s and Astronauti
s Paper 2008-3975



microphones

speaker speaker

burner

mics
photo-

multiplier

reference location

Figure 8. S
hemati
 of the test rig set-up. Linear sub-models Rus(s), Rds(s) and Gls(s) are identi�ed for the dashedupstream and downstream box and the a
tuator, respe
tively.downstream of the burner to allow for the de
omposition of the plane a
ousti
 �eld. More information isgiven in Gelbert et al.17. For model identi�
ation and 
ontrol, a
tuation is provided a
ousti
ally by speakersmounted up- and downstream of the �ame.III.C.1. Bla
k-box model for predi
ting the future developmentThe mathemati
al model used in the following linear MPC algorithm is ex
lusively based on input/outputdata. For this, the 
ombustion system is divided into an upstream and a downstream part, as shown in�gure 8. The a
ousti
 
hara
teristi
s of ea
h part are represented as 
omplex re�e
tion 
oe�
ients Rus and
Rds, relating the re�e
ted to the in
ident plane a
ousti
 wave in the frequen
y domain. These two partsare identi�ed with system identi�
ation methods from pressure signals obtained when a one-sided a
tuationthrough a loudspeaker is applied. For identi�
ation, 
hirp signals are used. More details about this non-trivialidenti�
ation of an unstable plant 
an be found in Gelbert et al.17 and the referen
es therein. A
tuation istaken into a

ount by modeling the left traveling wave g(s) of the downstream part as in Bothien et al.9 bya part whi
h is a result of the re�e
ted right traveling wave f(s) and another part 
oming from the 
ontrolinput u(s)

g(s) = Rds(s)f(s) + Gls(s)u(s) . (14)
Gls is the a
tuator transfer fun
tion and u(s) is the manipulated variable in the Lapla
e domain, respe
tively.State spa
e matri
es, as introdu
ed in se
tion II, relate to the transfer fun
tions in the Lapla
e domaina

ording to G(s) = C(sI − A)−1B if a 
ontinuous representation is 
hosen. Combining Eq. (14) with therelations for the upstream re�e
tion 
oe�
ient, f(s) = Rus(s)g(s), and for the pressure, p(s) = f(s) + g(s),leads to the total plant transfer fun
tion Gs(s),

p(s) = Gs(s)u(s) = Gls(s)
1 + Rus(s)

1 − Rds(s)Rus(s)
u(s) . (15)Equation (15) relates the s
alar input 
ommand u(s) to the s
alar output y(s) whi
h equals the pressure

p(s) = y(s) at a referen
e plane (see �gure 8). Hen
e, a SISO problem is 
onsidered again. A Bode plot, i.e.
|Gs(jω)| and arg{Gs(jω)} as a fun
tion of ω, is shown in �gure 9 (left).The MPC algorithm has to be implemented in a dis
rete-time fashion on a rapid prototyping hardware(dSpa
e® DS1103-PPC 
ontroller). Therefore, a dis
rete-time version of eq. (15) written as a time-seriesmodel is exploited in the form
p(k +1) = −a0p(k)−a1p(k−1)−· · ·−anap(k−na)+ b0u(k−d)+ b1u(k−d−1)+ . . . bnbu(k−d−nb) (16)in whi
h d is a time-delay in the general 
ase. As the absolute value of poles of dis
rete transfer fun
tionstends to move 
loser to 1 when the sampling frequen
y is in
reased, numeri
al problems o

ur with thedis
rete model if too large sampling frequen
ies are 
hosen. Therefore, the sampling frequen
y is set to

1000Hz. In future implementations, a formulation with a dis
rete-time state-spa
e des
ription as outlinedin se
tion II will be used instead. Then, sampling frequen
ies of 3000 or more Hz will be possible. Detailsabout the a
tually implemented algorithm 
an be found in Gelbert et al.17.As this thermoa
ousti
 system and the identi�ed model are unstable, a predi
tion of the future develop-ment of the plant is likely to lead to numeri
al problems in the MPC algorithm, irrespe
tive of the formulation12 of 19Ameri
an Institute of Aeronauti
s and Astronauti
s Paper 2008-3975
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 f in HzFigure 9. Bode diagrams of identi�ed systems. Left: Transfer fun
tion Gs of the plant to be 
ontrolled. Right:Stabilized system Gc (bla
k solid) and redu
ed order model of order 10 (red dashed).whether in state-spa
e or in the z-domain. Therefore, two 
ontrol loops are build up. In an inner loop theaforementioned phase-shift 
ontroller C(s) stabilizes the system, see �gure 10. The lo
ation of the referen
epressure sensor is 
hosen su
h that a time-delay τ = 0 results, i.e. C(s) = K. The MPC algorithm thendetermines the set-points umpc for this inner loop. As a 
onsequen
e, the model used in the MPC is not
�
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Figure 10. Cas
ade-like implementation of the MP 
ontroller for a single input single output problem.

Gs(s), but
Gc =

KGs

1 + KGs

. (17)This leads to a transfer fun
tion of order na = 40. To simplify the 
al
ulations in the MPC algorithm, aredu
ed order model with a similar frequen
y response in the frequen
y range of interest is determined. TheBode plot of Gc and the redu
ed model of order 10 
an be seen in �gure 9 (right) as well.The output of the MP 
ontroller, denoted by umpc in �gure 10, equals the �rst 
ontrol move of the MPCalgorithm, i.e. umpc = uf (k).As in se
tion II, an un
onstrained optimization is solved again giving rise to an expli
it formula to
al
ulate the next 
ontrol move. However, when the next output of the MPC algorithm umpc is pro
essed bythe inner loop, a violation of physi
al 
onstraints with respe
t to the loudspeaker input signal u may appearthrough u = K(umpc − y). These input signals are therefore limited in an ad ho
 fashion by an implementedsaturation blo
k to −0.9V < u < 0.9V , see �gure 10. A better way to a

ount for su
h 
onstraints would bean in
lusion into the optimization problem whi
h will be part of future work. In the algorithm implemented,as well old values of the 
ontrol input (and output) o

ur, as it is based on a des
ription as shown in eq.(16). To a

ount for a saturated input to the loudspeaker uapp in the next predi
tion, this information isgiven to the MPC algorithm as well, see �gure 10. More details 
an be found in17. Using a state-spa
e basedMPC, a 
orre
tion would only be ne
essary in the Kalman �lter. Here, all past information is 
ontained in13 of 19Ameri
an Institute of Aeronauti
s and Astronauti
s Paper 2008-3975



x(k).III.C.2. Closed-loop 
ontrolThe test rig is operated with natural gas at an equivalen
e ratio of 0.62 and a thermal power of 110 kW.This operating 
ondition 
auses a high amplitude thermoa
ousti
 instability, see �gure 11(a), bla
k, wherethe a
ousti
 pressure is shown. Distin
t peaks at 81 Hz and its harmoni
s 
an be seen. This os
illationfrequen
y 
orresponds to the λ/4-mode of the test rig. Peak amplitudes of 155 dB are observed.
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(b) Comparison of the weighted MPC (red) with the un-weighted MPC (blue); baseline 
ase without 
ontrol (bla
k).Figure 11. Spe
tra of a
ousti
 pressureSuppression of the instability with a simple proportional 
ontroller results in a peak amplitude attenuationof approximately 16 dB (red line in �g. 11(a)). The peak amplitude is still quite high but no harmoni
s arepresent anymore. Applying the MPC (blue), it is possible to a
hieve a signi�
antly higher redu
tion. Thepeak amplitude is de
reased by 31 dB, i.e. to less than 3% of its initial value. However, higher harmoni
sshow up whi
h may be a result of a spill-over e�e
t resulting in peak-splitting, see as well6.An unweighted MP 
ontroller is used here with respe
t to the 
ontrol error r − y, i.e. Qp = I and
Rp = O, whi
h means that the 
ontrol input is not penalized. To a

ount for dead-times and to improvethe 
losed-loop behavior the summation in the �rst term in eq. (1) starts from H1 = 40. The predi
tionhorizon is set to Hp = 150. Only one 
ontrol move is allowed in the MPC, i.e. Hc = 1.A typi
al experiment with this 
ontroller is shown in �gure 12(a) (top). High pressure �u
tuations areobserved in the beginning when the 
ontrol is o�. At t ≈ 7 s, the proportional 
ontroller is swit
hed on. The�u
tuations are slightly mitigated. The proportional 
ontroller is then swit
hed o� and on again (bla
k in�g. 12(a), bottom). Starting from t ≈ 37 s, the 
as
aded MPC-s
heme using an inner proportional 
ontrolleris used. A further redu
tion in the amplitude of the a
ousti
 pressure 
ompared to the proportional 
ontrollerresults.Sin
e the 
ontrol signal ump
 is not weighted at all, large 
ontrol 
ommands uapp are applied to theplant (see �g. 12(a) middle). Figure 12(b) shows a magni�
ation of the applied 
ontrol variable uapp (bla
k)and the 
ontrol variable ump
 (red) during 
ontrol with the unweighted MP 
ontroller. Obviously, uapp issaturated only slightly.During the 
ontrol with the proportional 
ontroller, the 
ontrol variable uapp does not ex
eed 0.6 V. Itshould be noted that a further in
rease of the 
ontrol gain does not 
ause a further de
rease of the os
illationamplitude. In
reasing the gain beyond a 
ertain threshold even results in an ampli�
ation of the instability.In order to avoid u being saturated by the ampli�ers' input limitation, a weighted MP 
ontroller (Hp =
150, Hc = 10, H1 = 20, Qp = I and Rp = diag(0.1)) is applied next. Additionally, the 
hanges in the 
ontrolmoves, i.e. u(k + j + 1) − u(k + j) are penalized as well with the same weight Rp, see17. The spe
trum ofthe a
ousti
 pressure �u
tuations 
orresponding to this 
ase is shown in red in �gure 11(b). The bla
k andblue lines are equal to the ones shown in �gure 11(a), i.e. they represent the baseline 
ase and the result ofMPC without weighting. The system is still stabilized, however, the resulting attenuation of 25 dB of thepeak amplitude is slightly less than in the 
ase without weighting. On the other side the spe
tra 13(a) andthe time tra
es 13(b) of the 
ontrol input show that the weighted MPC (in red) uses mu
h less a
tuation14 of 19Ameri
an Institute of Aeronauti
s and Astronauti
s Paper 2008-3975
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(b) Cal
ulated 
ontrol signal from the unweighted MPC
umpc (red) and resulting signal driving the woofers uapp(bla
k).Figure 12. Time tra
es of the 
losed loop.power 
ompared to the unweighted MPC (in blue).
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(b) Se
tion of the 
ontrol signals' time responsesFigure 13. Comparison between weighted (red) and unweighted (blue) MPC.III.D. Redu
tion of the drag of an Ahmed bodyIn a 
ompanion paper by Muminovi
 et al.32 a robust and a model predi
tive 
ontrol of the �ow past a3D blu� body is dis
ussed and 
ompared extensively. An Ahmed body of 1/4 of the original size proposedby Ahmed1 is 
onsidered in32 with a 
onstant blowing through two 
orner a
tuators. In this 
ontribution,we show that the MPC algorithm 
an as well be applied to the full-s
ale Ahmed body. Di�erent a
tuatorsand a harmoni
 a
tuation are used here. A sket
h of the experimental set-up is given in �gure 14. Theexperiments are 
ondu
ted in a wind tunnel with a 
losed test se
tion (
ross se
tion area ATS = 2.82 m2,length lTS = 10 m). The free-stream velo
ity is u∞ = 7m/s. The shape of the generi
 
ar model is based on15 of 19Ameri
an Institute of Aeronauti
s and Astronauti
s Paper 2008-3975
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Figure 14. Left: Sket
h of the Ahmed Body. Right: Rear part of the Ahmed body.Dieses Bild muss no
h bearbeitetwerden...the original geometry of the Ahmed body1 (length l = 1044 mm, height h = 288 mm, and width w = 389mm) with a slant angle ϕs = 25◦ (see �gure 14 left).For blowing, 
avities are integrated spanwise between the interse
tion of the roof of the body and the slantat the rear end (see �gure 14 right). Periodi
 ex
itation is applied. The a
tuation frequen
y is set 
onstantto a value of 60 Hz. The blowing for
ing intensity is adjustable through a valve. Three more a
tuators arein
luded in the model at the rear 
orners. However, only results for a
tuation with the a
tuator betweenthe roof and the slant are shown here. A total of 27 pressure sensors on the slant and 9 on the base of therear end are installed. Sin
e it is assumed that the �ow 
on�guration is symmetri
, the sensors are pla
edon one side of the body only. Ea
h pressure reading is des
ribed by the non-dimensional 
oe�
ient
cp(x, y, z, t) =

∆p

ρ · u2
∞

/2
, (18)in whi
h ∆p is the instantaneous pressure di�eren
e between a stern-mounted pressure gauge and a referen
epressure, and ρ denotes the density. A six 
omponent for
e balan
e mounted below the wind tunnel testse
tion is used to measure the e�e
t of the applied �ow 
ontrol method on the over all drag of the Ahmedbody. Data a
quisition and implementation of the 
ontroller is realized by a rapid prototyping hardware(dSpa
e® DS1103-PPC 
ontroller) with a sampling frequen
y of 350 Hz.
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t [s]Figure 15. Referen
e tra
king experiment 
ondu
ted at a Reynolds number of Rel = 500000. Upper panel: Solid linerepresents the measurement, i.e. the normalized pressure 
oe�
ient at sensor position 4. The dashed line indi
ates thereferen
e traje
tory. Lower panel: Blowing intensity.Brunn et al.10 showed that through the shape indu
ed separation longitudinal and spanwise vorti
es16 of 19Ameri
an Institute of Aeronauti
s and Astronauti
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o

ur. These vorti
es impose a low pressure at the rear end of the Ahmed body. The resulting pressuredi�eren
e between the front and the rear end is the main 
ontributor to the overall drag. A good 
orrelationbetween the sensor readings at sensor position 4 (lo
ated at the middle of the slant in the symmetry axis)and the overall drag exists. The aim of this investigation is to in�uen
e these vorti
es through periodi
blowing in su
h a way that the pressure at the rear end in
reases and the overall drag de
reases, as wasshown in Brunn et al.10.For predi
ting the future behavior inside a MPC algorithm, a very simple �rst order model is identi�edfrom experiments, see as well32. In the Lapla
e domain it reads
G(s) =

K

T1s + 1
, (19)and in dis
rete-time state-spa
e form a

ording to se
tion II

A = e−
h

T1 , B = KT1e
−

h
T1 (e − 1) , C = 1 . (20)The following parameters are 
hosen: Hp = Hc = 1750, i.e. 5 se
onds, Qp = I and Rp = diag(10−7). Hen
e,the 
osts of the a
tuator signal are almost negle
ted.Figure 15 presents a referen
e tra
king experiment applying a linear MPC s
heme. As 
an be seen,the MPC holds the normalized pressure 
oe�
ient at a 
onstant level of −0.5. At approximately 13s, thevalue of the referen
e is 
hanged. The MPC drives the system within 0.5s to the new referen
e level. Therelatively slow dynami
 is a result of a rather slow dynami
al behavior of the valve used to regulate theblowing intensity. Otherwise, the MPC shows a good performan
e.IV. Con
lusionsThe more is known about a system, the better the 
ontrol 
an be. In many 
lassi
al 
ontrollers, models ofa pro
ess are only used during synthesis of the 
ontroller. In 
ontrast, MPC exploits a pro
ess model insidethe algorithm. As an optimization problem over a future horizon is 
onsidered, there are no restri
tions
on
erning the variables whi
h are used to des
ribe the su

ess of 
ontrol as long as they 
an be 
al
ulatedby that model. Very di�erent 
riteria 
an be formulated, 
ombining di�erent aspe
ts at the same time.Moreover, when enough 
omputing power is available, equality and inequality 
onstraints 
an be in
ludedin the optimization in a straightforward manner. With no other 
ontrol te
hnique this pra
ti
ally veryimportant issue 
an be dealt with so easily.This 
ontribution reviewed �rst appli
ations of MPC for �ow 
ontrol problems. For the �ow past a 
ir
ular
ylinder a 
onstrained nonlinear MPC outperformed other nonlinear 
ontrol approa
hes. The suppressionof thermoa
ousti
 instabilities in a burner 
ould be further improved by a linear MPC in 
omparison to asimple proportional 
ontroller proposed earlier. First studies of the drag redu
tion of an Ahmed body andthe suppression of Tollmien-S
hli
hting waves show promising results as well.A
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k, M. Morzyński, and G. Tadmor. Nonlinear �ow 
ontrol based on alow dimensional model of �uid �ow. In T. Meurer, K. Grai
hen, and E. D. Gilles, editors, Control and Observer Design forNonlinear Finite- and In�nite-Dimensional Systems, pages 369�386. Springer, 2005.
27M. Kloker. A robust high-resolution split-type 
ompa
t FD-s
heme for spatial dire
t numeri
al simulation of boundary-layer transition. Appl. S
i. Resear
h, 59(4):353�377, 1998.
28T. C. Lieuwen and V. Yang, editors. Combustion Instabilities in Gas Turbine Engines, volume 210 of Progress inAstronauti
s and Aeronauti
s. AIAA, In
., 2005.
29J. P. Moe
k, M. R. Bothien, C. O. Pas
hereit, G. Gelbert, and R. King. Two-parameter extremum seeking for 
ontrol ofthermoa
ousti
 instabilities and 
hara
terization of linear growth. 2007. AIAA Paper 2007-1416.
30A. S. Morgans and A. P. Dowling. Model-based 
ontrol of 
ombustion instabilities.
31M. Morzy«ski, K. Afanasiev, and F. Thiele. Solution of the eigenvalue problems resulting from global non-parallel �owstability analysis. Comput. Meth. Appl. Me
h. Enrgrg., 169:161�176, 1999.
32R. Muminovi
, L. Henning, R. King, A. Brunn, and W. Nits
he. Robust and model predi
tive drag 
ontrol for a generi

ar model. In AIAA 4th Flow Control Conferen
e 2008-3859, 2008.
33B. R. Noa
k, M. S
hlegel, B. Ahlborn, G. Muts
hke, M. Morzy«ski, P. Comte, and G. Tadmor. A �nite-time thermody-nami
s of unsteady �uid �ows. J. Non-Equilibr. Thermodyn., To appear in Volume 33(2), 2008.
34B.R. Noa
k, K. Afanasiev, M. Morzy«ski, G. Tadmor, and F. Thiele. A hierar
hy of low-dimensional models for thetransient and post-transient 
ylinder wake. J. Fluid. Me
h., 497:335�363, 2003.
35M. Pastoor, L. Henning, B.R. Noa
k, R. King, and G. Tadmor. Feedba
k shear layer 
ontrol for blu� body drag redu
tion.J. Fluid. Me
h., a

epted.
36T. J. Poinsot, A. C. Trouve, D. P. Veynante, S. M. Candel, and E. J. Esposito. Vortex-driven a
ousti
ally 
oupled
ombustion instabilities. 18 of 19Ameri
an Institute of Aeronauti
s and Astronauti
s Paper 2008-3975



37S. Qin and T. Badgewell. An overview of industrial model predi
tive 
ontrol te
hnology. In AIChE Symposium Series -Ameri
an Institute of Chemi
al Engineers, pages 232�256. AIChE, 1997.
38J. B. Rawlings. Tutorial overview of model predi
tive 
ontrol. IEEE Control Systems Magazine, 20(3):38�52, 2000.
39U. Rist and H. Fasel. Dire
t numeri
al simulation of 
ontrolled transition in a �at-plate boundary layer. J. Fluid Me
h.,298:211�248, 1995.
40M. Samimy, M. Debiasi, Caraballo, A. E.ãndSerrani, X. Yuan, J. Little, and J. Myatt. Feedba
k 
ontrol of subsoni

avity �ows using redu
ed-order models. J. Fluid Me
h., 579:315�346, 2007.
41S. Siegel, K. Cohen, and T. M
Laughlin. Feedba
k 
ontrol of a 
ir
ular 
ylinder wake in experiment and simulation.AIAA-Paper 2003-3569, 2003.
42D. Sturzebe
her and W. Nits
he. A
tive 
an
ellation of tollmien-s
hli
hting instabilities on a wing using multi-
hannelsensor a
tuator system. Int. J. Heat and Fluid Flow, 24(4):572�583, 2003.
43W. Waldra�, R. King, and E.D. Gilles. Optimal feeding strategies by adaptive mesh sele
tion for fed-bat
h biopro
esses.Biopro
ess Engineering, 17(4):221�227, 1997.
44H.-H. Wang, S. Yeung, and M. Krsti
. Experimental appli
ation of extremum seeking on an axial �ow 
ompressor. InPro
. of the Ameri
an Control Conferen
e 1998, Philadelphia, Pennsylvania, U.S.A., 1998.
45K.E. Wu and K.S. Breuer. Control of boundary layer using FXLMS feedforward ar
hite
tures. AIAA-Paper 2006-3022,2006.

19 of 19Ameri
an Institute of Aeronauti
s and Astronauti
s Paper 2008-3975


