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Proper orthogonal decomposition (POD) Galerkin models are typically obtained from
a single reference, such as an attractor. The POD model provides a very efficient repre-
sentation of the reference but is often incapable to handle transient dynamics and other
changes in flow conditions. These shortcomings are detrimental in feedback flow control
applications. A novel concept of tuned Galerkin models is suggested, by which the global
model interpolates a succession of similar-structure local models. The tuned model covers
a controlled transient manifold, compensating for the gradual deformation of dominant
flow structures, along such transients. The model is an enabler for both improved tracking
performance, as well as for optimized control hardware placement, taking into account the
entire dynamic range of interest. These concepts are demonstrated in the benchmark of
stabilization of the wake flow behind a circular cylinder.

I. Introduction

This paper is part of a continued effort (see e.g.,?, 1, 2, 4–11) to develop low order flow models that can
be used for feedback design. Such models need to strike a difficult balance between the complexity entailed
by a rich dynamic envelope, covering relevant transients, and the simplicity and low dimension necessary
for implementable design. Proper orthogonal decomposition Galerkin models (GMs)12 provide efficient
Karhunen-Loève approximation of flow data, but their typical dynamic fragility away from the reference
orbit and flow conditions is particularly detrimental for control design, where transients representation is
essential.

A key challenge for the representation of transient dynamics, away from a single reference orbit, is that
dominant flow structures tend to change significantly as the system traverses such trajectories. Referring
to the driving example of this paper, the 2D laminar cylinder wake, characteristics of such changes include
a substantial shortening of the recirculation bubble of the mean flow, and shorter vortex shedding periods
and spatial wave length of the von Karman vortices, as the system transition from the unstable steady flow
to the natural vortex shedding limit cycle.13 A second challenge is due to the generation of flow structures
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that are not present in the natural flow by the actuation, especially under higher gains. This is reflected by
the need to include up to 40 modes in a Galerkin model used for optimal control of this system,9 whereas
only 3 modes suffice for a decent representation of natural transients.?

This note aims to regain low dimension in design oriented flow models without losing the necessary
dynamic range. It exploits the fact that while undergoing continuous deformations, the POD model at
intermediate (natural or controlled) attractors often maintains both the same small number of leading modes,
their main topological features and key dynamic properties of the local Galerkin system ODE. We shall
therefore pursue a novel idea of tunable models: The tuning parameter in such models reflects slow dynamics,
such as changes in the mean flow, and is used to adjust the expansion modes and model coefficients of faster,
local dynamics, such as periodic vortex shedding. The interpretation of the state of the Galerkin system as a
vector of Fourier coefficients of a fixed set of expansion modes will thus be adjusted as the system traverses
transient trajectories and moves from the domain of one local model to the next. This framework lends itself
as a means to maintain high model fidelity along transients by allowing the Galerkin system to benefit from a
large number (ideally, a continuum) of expansion modes, while maintaining a local low order. In the cylinder
wake example, instead of using 40 expansion modes we would suggest multiple mode pairs, each reflecting the
dominant first vortex shedding harmonic over an intermediate controlled attractor. Following our previous
work,1, 7, 8, 13 the global model will be a 3 states ODE, interpolating a single shift state, representing changes
in the mean flow, and a pair of Fourier coefficients, reflecting the local von Karman expansion modes. The
slowly varying shift state can also be used as the tuning parameter. Equivalent alternatives include the
estimated instantaneous vortex shedding frequency or the low-pass filtered streamwise flow velocity at an
equator point, in the near wake.

The advantage of the tuned model over the traditional POD model will be demonstrated both with respect
to achievable closed loop performance and when sensor locations are optimized, to assure even performance
throughout the transient range, rather than in a narrow neighborhood of the natural attractor.

II. The Cylinder Wake Benchmark, Design Objective and Basic Actuation

s e n s o rA )  v o l u m e  f o r c e

B )  c y l i n d e r  o s c i l l a t i o n
Figure 1. Principal sketch of the actuated cylinder wake. The cylinder is represented by the black disk. The
location of the volume-force actuator (A) is indicated by a grey circle, and the transverse cylinder motion (B)
by arrows. Streamlines represent the natural flow. The figure includes a hot-wire anemometer at a typical
experimental position. This sensor has been used in an observer-based control using a Galerkin model1.

The laminar two dimensional flow in the circular cylinder wake is used as a benchmark for the devel-
opments in this note. It is characterized by a transition to von Karman vortex shedding instability at
Re ≈ 47, and is considered here at Re = 100. The natural flow is then characterized by a periodic attrac-
tor. A common design objective14–17 in this system is to suppress this instability which causes mechanical
vibrations and increased drag. Figure 1 provides a schematic of a postulated planar flow with two forms
of actuation: The vertical volume-force actuator used in this note, which is supported over a downstream
disk, and vertical vibrations of the disk, considered e.g. in2, 18 and implemented experimentally at the Air
Force Academy.? Stream-lines represent the natural flow. The picture includes a hot-wire anemometer -
a fluid velocity sensor - representing flow sensing, as previously discussed in.1 Model-based optimization
of sensor(s) position will be discussed in §F, as an example of a general framework for control hardware
optimization and a demonstration of the advantage of the tuned models that are introduced in this note.

A simple, physically motivated control policy is to apply actuation as a dissipative deceleration force:
The energy extraction rate
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− ǫ(t)

∫

Ω

dV g(x) · u(x, t) (1)

is approximately proportional to −ǫ(t)vvf (t), where vvf = v(xvf ) is the vertical velocity field at the
center of the supporting disk of the volume force, the point xvf = (2D, 0), with D being the diameter of
the cylinder and the radius support of the volume force. The amplitude of vvf is denoted as v̂vf . The
approximation gives rise to the feedback ǫ(t) = −k vvf (t), where the gain k > 0 determines the dissipation
rate. The purpose of the flow model, in this context, is to be able to approximate the value of vvf (t) from
flow measurements. Under periodic vortex shedding, vvf (t) will be nearly periodic. Thus, a critical aspect
of the predictive power of the model concerns the ability to infer the correct oscillation phase of vvf (t).

The simplified description of the flow as dominated by a nearly periodic vortex shedding is valid in the
natural flow, as well as under low amplitude actuation at (about) the vortex shedding frequency, and as
long as actuation does not attempt to significantly interfere with that frequency.1 The respect of these
restrictions is therefore a cornerstone of any effective design, including the developments in the paper. This
will ensure, in particular, the validity of the modeling framework proposed here.

III. Empirical Control-oriented Galerkin Models

A. Control Design with POD of the Natural Flow

Starting point of the current efforts is the minimal Galerkin-model13 summarized in Appendix A. The
Galerkin system is expressed in cylindrical coordinates:

[

ṙ

ȧ3

]

=

[

σr −βr

δr −ρ

] [

r

a3

]

+ b

[

cos(θ − φ)

0

]

ǫ +

[

0

η3

]

(2)

φ̇ = ω + γa3 +
b

r
sin(θ − φ)ǫ (3)

where θ = 6 (g1, g2) and b =
√

g2
1 + g2

2. This form reveals two basic facts: First, however designed, an
admissible actuation force that is effective in attenuating oscillations and that meets the constraint that the
net period average impact on the oscillation frequency be negligible, must be in phase with − cos(θ − φ).1, 4

This means that any admissible control policy is bound to (roughly) immitate the simple physics based,
dissipative policy suggested in §II. A subsequent observation is that the angle θ, extracted from the low
dimensional Galerkin approximation, is critical to correct orientation of the actuation force. This point will
be revisited later.

A Galerkin model-based counterpart of the physics based policy of §II approximates vvf (t) by the vertical
component of the Galerkin expansion (12), a1(t)u1(xvf )+a2(t)u2(xvf ). Equivalently, the actuation is set to
be proportional to −r cos(θ − φ). A dynamic observer, estimating this quantity from sensor measurements
was developed in1, 4 and a simplified variant is discussed in §D.

B. Interpolated POD Models

To understand the limitation on the effectiveness of the POD based control, right above, it is useful to
consider Figure 2. The several plots in that figure are based on three sets of simulations, represented by the
three rows: From top to bottom, those include the natural attractor and two controlled limit cycles, obtained
by the dissipative control of §II with a moderate and a more aggressive feedback gains, applied directly to
the correct value of vvf . For each simulation the figure includes a snapshot of the flow field, from left to right,
the mean flow field and the first oscillatory POD mode. While the topological characteristics of all three flow
conditions are similar, they exhibit significant mutual deformations: The recirculation bubble is gradually
elongated and the vortical structures are pushed downstream as the flow is stabilized. Particularly relevant
here, are the changes in the values of gi = (ui,g)Ω, hence in the critical value of the angle θ = 6 (g1, g2),
and the definition of the flow phase φ(t) = 6 (a1(t), a2(t)) in terms of the leading POD modes. When only
the POD modes of the natural attractor are employed, both the value of θ and the definition of φ(t) that
are used to determine the actuation signal become increasingly wrong as vortex shedding is attenuated.
Eventually, these errors reach a level at which the actuation ǫ ∝ −r cos(θ−φ) is so out of phase that it loses
its effectiveness.
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Figure 2. Left: Snapshots of level curves of the flow field; Middle: Averaged flows; Right: First POD mode.
Top: the natural attractor; Middle: A moderately forced, attenuated attractor; Bottom: An aggressively
actuated flow. Each row includes a snapshot the flow field (left), the mean flow field (middle) and the first
oscillatory POD mode (right).

A model providing an effective solution to this problem must therefore account for the change in dominant
modes along transients.20 The solution suggested here exploits the structural similarity between controlled
limit cycles, represented by the several lightly doted circles in Figure 3. These orbits were obtained by
complete information feedback ǫ = −kvvf , for escalated values of the gain k. Controlled transients with slow
changes in the perturbation level progress along the manifold connecting these cycles. The dynamics near
each of the cycles is dominated by the shift mode and two locally extracted oscillatory modes u1 and u2. The
Galerkin systems obtained by projecting the NSE (14) on these local modes are each of the form (17)-(3),
albeit with different coefficients. The local values of the Galerkin system coefficients are functions of the
characteristic value of a parameter representing the instantaneous flow condition. The Galerkin expansion
will retain the form (17), with parameterized coefficients, and the expansion (12) will be interpreted with
respect to the local expansion modes, associated with the present parameter value. This model will be valid
for slow vertical transitions along the dynamic manifold in Figure 3 (which prevents the need to include the
dynamics of mode deformation).

While the technical details of the interpolation deserve well more than the space available here, the key
relevant fact for control design, in our system, is that the local model provides both the appropriate value
of θ and appropriate local concepts of the instantaneous phase φ and amplitude r, of the flow. Indeed, these
are the three key quantities needed for effective control.

C. Actuation Design With Interpolated Models

Again, a Galerkin model-based version of the dissipative feedback ǫ = −kvvf of §II is that were vvf (t)
is approximated by the the vertical component of the Galerkin expansion (12): vvf (t) ≈ a1(t)u1(xvf ) +
a2(t)u2(xvf ). The difference from the implementation of §A is that now the tuned POD approximation
is used. For Comparison a SISO phasor controller is implemented (see §D, E) that uses a sensor signal
measured at (x, y) = (3D, D). The amplitude for the feedback control is set such that it is the same as for
the implementations above.

Figure 3 compares the natural attractor with limit cycles obtained by feedback control with a POD model
extracted from the natural flow, control using the interpolated Galerkin model and, as a benchmark, control
with direct flow measurement. In all cases, the feedback gain is identical: k = 0.3. It should be noted that
with this gain complete attenuation cannot be achieved. As can be seen, the attenuation achieved with the
traditional POD model is much inferior to what is attained with the interpolated model, which, in turn is
close to the response with direct flow measurement.

In Table 1 several quantities are tabulated that show the performance of the standard model and the
interpolated model. As in Figure 3 results for the natural flow, feedback control with a POD model extracted
from the natural flow, control using the interpolated Galerkin model and control with direct flow measurement
are shown. In addition results for a SISO simulation are shown that also uses an interpolated model. The
SISO results compare well with the tuned POD. This improvement is enabled by the fact that the high level
of flow reconstruction by the interpolated model is maintained along trajectories, but lost when just the
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natural attractor’s data is used.
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Figure 3. Phase Space of the first three Fourier coefficients a1, a2 and a3, obtained by projection of the
snapshots of the DNS data on the respective POD modes. The top limit cycle corresponds to the natural flow,
the traditional POD GM corresponds to standard POD (using the natural flow data), the new POD GM is the
interpolated model (using more reference simulations), and the physics-based control is feedback with direct
flow measurements. All with feedback gain ǫ = −0.3vvf .

Natural Standard Interpolated SISO Complete

Flow POD POD (see §E) Information

vvf max 0.520 0.312 0.189 0.138 0.137

xRec 2.35 2.89 3.56 3.78 3.73

TKE 2.43 2.24 1.86 1.87 1.75

a3 0 -0.17 -0.47 -0.71 -0.67

Table 1. Quantities that highlight the differences between standard and interpolated models. The following
quantities are tabulated: i) the oscillation amplitude of the vertical velocity vvf at the point (2D, 0), denoted
vvf max, ii) the average length of the recirculation bubble xRec, iii) The perturbation (= turbulent kinetic)
energy (TKE) in each limit cycle, and iv) the value of a3.

D. Observer Design with an Interpolated Model

A full state observer, based on the Galerkin system (15) in a fixed (no tuning) empirical GM is discussed
in.1, 4 Here we suggest a simpler alternative that, among other advantages, bypass the need to address
the parameter and time dependence of expansion modes. Like the tuned model, the observer exploits the
timescale separation between the periodic oscillations, represented schematically by motion in the horizontal
cross sections of the manifold, in Figure 3, and the transition between operating points, represented by the
vertical component of motion, in that figure. The latter is responsible, in particular, for slow changes in the
oscillation frequency and amplitude.

For simplicity, we shall consider here the case of a single vertical velocity sensor at a point xs, although
the ideas are extendable to the utilization of multiple sensors. The ideal sensor signal will be of the form

s = v0(xs) + a1v1(xs) + a2v2(xs) = A0 + A1 cos(θ) + noise, θ̇ = ω (4)

where vi are the vertical components of the vector-fields ui and parameter dependence notations are sup-
pressed, where ω is interpreted as the instantaneous vortex shedding frequency (i.e., the quantity ω + γa3

in (15)), and where both the unknown A0, A1 and the frequency ω are slowly varying. Time variation will
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be due to actuated changes in vortex shedding, and due to the associated changes in the dominant velocity
fields.
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Figure 4. Parametrization of the operating condition. Left: Frequency as parameter. Right: Sensor amplitude
as parameter.

The formulation (4) will be used to dynamically track slow changes in the coefficients A0, A1 and the
frequency ω and the nearly linear growth in θ as explained below. The estimated A0, A1 and ω can be used
to parameterize the tuned modes, see Figure 4 for an example.

The assumption that the quantities A0, A1, ω are subject to slow changes leads to a nominal discrete
time dynamic model
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




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θ











(tk) (5)

s(tk) = A0(tk) + A1(tk) cos(θ(tk)) (6)

where △t is the time step. This framework is, in fact, a simpler variant of the dynamic phasor approximation
used in,21 and readily lends itself to state estimation by an extended Kalman filter (EKF), where the emphasis
is on conservative, hence slow tracking.

Model eq. 5, 6 forms a (slow) narrow banded low-pass filter for reconstruction of the sensor signal
signal. The plots in Figure 5 demonstrate the dynamic reconstruction of the sensor signal for a sensor at
(x, y) = (3D, D). The zoom on the left side in Figure 5 shows that the observer lags approximately one
period behind the sensor signal during relatively fast transients, i.e. the model assumption 5 is not adequate
here.

The position of the single velocity sensor can be optimized, as described in §F, below.
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Figure 5. Plot of the sensed velocity trajectory and its dynamic estimate. Both the entire trajectory and a
zoom on a fast changing transient are displayed.
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E. SISO Control With Interpolated Models

As noted before the only admissible control policy is the physics based, dissipative policy described in §II.
The optimal actuation is based on the energy extraction rate; eq. 1: −ǫ(t)

∫

Ω

dV g(x) · u(x, t)

The goal here is to relate the ideal actuation signal 1 to the dynamically estimated signal 6. Therefore
eq. 1 is written as follows:

− ǫ(t)

∫

Ω

dV g(x) · u(x, t) = −k(t) cos(θs(t) + ∆φ(t)) (7)

where k is the amplitude of the volume force, θs the phase of the sensor signal and ∆φ the phase difference
between the sensor signal and the ideal actuation signal (i.e. the phase of the projection on the left hand side
of the equation). For a sensor at (x, y) = (3D, D), where D is the cylinder diameter, the phase difference
∆φ as function of the sensor amplitude is shown in Figure 6. Note that the sensor used here is optimal in
the sense that the changes in phase difference are small over the simulated trajectories (about 10o).

The dynamic observer estimates the frequency and leading phasors of the sensor signal. A lookup table
is then used to determine the phase difference between the sensor signal and ideal actuation.

An example of SISO sensor feedback is shown in Figure 7. Here the amplitude of the volume force k and
the velocity signal at the center of the volume force vvf (an approximation to the projection) are plotted.
Ideally these two signals should be 180o out of phase all the time. The goal in this simulation was to stabilize
the flow at a fluctuation level that corresponds to an amplitude v̂vf ≈ 0.07 (time≈200). The fluctuation
level is decreased to the desired level, rises to a well defined fluctuation level and drops again to the desired
level and so on. This pattern is confirmed by simulations similar to the one shown in Figure 7.

As shown in previous work8 for a similar configuration where the wake is suppressed using a translating
cylinder instead of a volume force, there are stable and unstable limit cycles under closed loop control. We
believe that this is the case here. The fluctuation level is brought down to the desired level, but since this
level corresponds to an unstable limit cycle it is not possible to maintain the flow there (at least under the
control policy used here). Hence the fluctuation level rises to a level that corresponds to a stable limit cycle
under closed loop control.

This conjecture is illustrated in a second simulation where the same control law is used as before. The
control goal is to stabilize the flow at at a fluctuation level that corresponds to an amplitude v̂vf ≈ 0.24.
Here the amplitude settles at a steady level and no ‘ringing effects’ are observed. The amplitude of the
volume force k and the velocity signal at the center of the volume force vvf of this simulation are shown in
Figure 8.

In Figure 9 the recirculation length of the two discussed simulations are compared with each other. The
recirculation length, defined as the point where the downstream velocity changes sign on the equator, gives a
good indication of the change in mean flow. The ringing phenomenon as shown in Figure 7, corresponding to
problems in phase estimation, can be directly observed (s1). The stabilized wake, characterized by a higher
fluctuation level, corresponds to the steady lower recirculation length (s2).
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Figure 6. The phase difference ∆φ between the sensor signal and the ideal actuation signal as function of the
sensor amplitude A1 at location (x, y) = (3D, D).
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The control goal is to reduce the fluctuation level of the flow corresponding to an amplitude v̂vf ≈ 0.07. The
zoom illustrates the phase problem around the desired state.
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Figure 8. Plot of the amplitude of the volume force and the velocity at the center of the volume force vs. time.
The control goal is to reduce the fluctuation level of the flow corresponding to an amplitude v̂vf ≈ 0.24.

F. Optimizing Sensor Location and Observation with an Interpolated POD Model

The tradeoff between cost, hardware constraints and performance, a hallmark of control engineering, becomes
critical in fluid flow applications. Indeed, limitations on feasible locations, weight and size of actuation and
sensing hardware clearly makes the efficiency of that hardware a make-or-brake issue. Here we discuss the
utility of tuned GMs as a basis for a systematic framework to asses and optimize hardware placement, and
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Figure 9. The elongation of the recirculation length as a function of time. The legend s1 refers to the simulation
shown in Figure 7. and the legend s2 refers to the simulation shown in Figure 8.

8 of 12

American Institute of Aeronautics and Astronautics Paper 2006-1407



illustrate that framework in the context of optimized sensor(s) location in the cylinder wake benchmark.
The inverted observability and controllability Grammians of linear (time varying) systems define measures

of the required actuation effort and the sensitivity of an output signal to state changes. The smallest singular
values of the respective Grammians therefore provide systematic quantification of the dynamic effectiveness
of sensors and actuators22 and yield meaningful cost indices for model based optimization. In a nonlinear
system, Grammians defined by linearizations along representative trajectories are the natural substitute.
When the system is nearly periodic, the Grammians associated with a single period and normalized by the
period length are natural candidates. As may well be expected and as is illustrated in the cylinder wake
flow, below, changes in dominant modes as the system transitions between operating points are reflected by
changes in the sensitivity of sensors to state dynamics. A meaningful optimization criterion would therefore
be to maximize the worst sensor performance over the entire transient range.

Consider now the cylinder wake flow with a finite set of sensors. For notational simplicity we shall assume
that all these sensors measure the vertical velocity (i.e., the “v” component of the velocity field) at points
xk, k = 1 : . . . , K. We shall focus on the short term sensitivity of the sensor to the phase and amplitude
of the Fourier coefficients a1 and a2. In a simplified continuous time model one can thus assume a fixed
frequency. Invoking the appropriately adjusted notations of (4) and denoting the model tuning parameter
by “p” (e.g., p = ω), the sensing problem is defined in the system

d

dt

[

a1

a2

]

= A(p)

[

a1

a2

]

, shp := s − A0 = C(x, p)

[

a1

a2

]

(8)

where x = {xk, k = 1 : . . . , K} and where

A(p) =

[

0 −ω

ω 0

]

and C(x, p) =













v1(x1, p) v2(x1, p)

v1(x2, p) v2(x2, p)
...

...
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











(9)

It is easy to see that the normalized single period observability Grammian is, in this case

1

T
Go(T, x̄, p) =

1

T

∫ T

0

eA(p)′tC(x̄, p)′C(x̄, p)eA(p)tdt = 0.5‖C(x̄, p)‖2
F (10)

where we use the explicit form of the matrix exponential, the subscript F indicates the Forbinius norm, and
I2 is the 2×2 identity. The optimal sensor location is therefore determined as the solution of the optimization
problem

max
x̄

min
p

‖C(x̄, p)‖F (11)

In Figure 10 we show plots of ‖C(x̄, p)‖F as a function of p, where the set of sensor locations x̄∗ was
optimized with respect to the first 1, 4, 9 or 18 (out of 18) equally spaced operating conditions, for both a
single and for three velocity sensors. As is clearly observed, the predicted performance of sensors that are
optimized for a single parameter value (i.e., for the natural attractor) is higher early on but deteriorates
rapidly with the change of p, while those optimized over a wider range maintain an increasingly even per-
formance during transitions. Multiple sensors improve both the relative flatness (peak-to-peak ratio) of this
performance measure and increase the minimal value.

IV. Conclusions

A framework of interpolated Galerkin models for fluid flow systems strikes a balance between the need for
higher number of modes to represent actuation and transients and the desire to maintain model simplicity and
minimize the number of dynamic variables that need to be estimated in real time, in feedback implementation.
Advantages over traditional POD models have been illustrated in the context of vortex shedding suppression
behind a circular cylinder, and are manifest by improved ability to suppress vortex shedding and an improved
sensor performance over a wider transients range. Due to intrinsic instabilities it is difficult to fully stabilize
the wake using SISO control with interpolated models.
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Figure 10.Plots of the Frobenius norm ‖C(x̄∗, p)‖F as a function of the operating condition p for a single sensor
(left) and 3 sensors (right). The optimal sensor location(s) vector x̄∗ is computed for the first 1, 4, 9 or 18
(out of 18) equally spaced operating points.
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A. Empirical Galerkin Models

A. Basic Framework

Galerkin models (GMs) are based on an approximation of the flow’s velocity field as a combination of a base
flow (say, the natural mean flow) and an orthonormal mode set

u[N ] =

N
∑

i=0

ai(t) ui(x), (12)

where u0 is a base mode with amplitude a1 = 1.
The time invariant modes ui(x) satisfy the boundary conditions and non-compressibility conditions (when

applied) and are embedded in the spatial L2 space, including the inner product

(u,v)Ω :=

∫

Ω

dV u · v, u, v ∈ L2(Ω). (13)

Time dependence is restricted to the Fourier coefficients ai(t). Time dynamics are derived from the non-
dimensionalized, Navier-Stokes equation (NSE)

∂tu + ∇ · (uu) = −∇p +
1

Re
△u + ǫ g, ∇ · u = 0 (14)

where x represents location, t is time, u the velocity field, p, the pressure, g is a volume force modulated
by the commanded amplitude ǫ, representing the control mechanism considered in this note. A compression
of (14) to the subspace spanned by the selected modes yields a quadratically nonlinear ordinary differential
equation, termed the Galerkin system

d

dt
ai =

1

Re

N
∑

j=0

lij aj +

N
∑

j,k=0

qijk aj ak + ǫgi for i = 1, . . . , N, (15)

where the linear and quadratic terms represent the viscous and convective Navier-Stokes terms, respectively,
with constant coefficients lij := (ui,△uj)Ω, qijk := (ui,∇ · (uj ,uk))Ω and gi := (ui,g)Ω the projection of
the volume force. In particular, the coefficients of (14) are commonly obtained by a projection (known as the
Galerkin projection) of the right hand side of (14) on the modes subspace. In very low order approximations,
the Galerkin projection may lead to dynamic distortions, resulting from neglected domain and signal space
components, including a truncated energy cascade and neglected net pressure work. Estimation methods?, 19

can be used to improve model fidelity, adjusting the values of coefficients in (15) but maintaing its form.
In proper orthogonal decomposition12 approximations, ui, i = 1, . . . , N , are Karhunen-Loève modes,

obtained from experimental data or from a numerical simulation of (14) as linear combinations of fluctuation
snapshots um − u0, m = 1, . . . , M , M >> N , of a reference trajectory. The chosen combinations minimize
the averaged energy residual of the Galerkin ansatz (12) with respect to the snapshot ensemble. In this
respect, (12) is then an optimal kinematic approximation of the reference.

The efficiency of the POD approximation often comes at the cost of fragility, away from the reference
trajectory. The Galerkin approximation is hardwired to the actuation used at the reference and the Galerkin
system does not accommodate dynamics associated with other actuation inputs or initial data. In particular,
the system does not include dynamically significant modes that are orthogonal to the subspace spanned by the
reference, such as changes in the mean flow. As a first step to address this issue the authors have elaborated
the role of the shift-mode?, 1 as an enabler for non-equilibrium model for transient flow. The shift-mode u∆

represents mean-field correction and is aligned with the difference between the unstable steady Navier-Stokes
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solution us and the time-averaged flow u0. Formally, the shift-mode u∆ and its amplitude a∆ are considered
as the N + 1st mode and Fourier coefficient, respectively. As shown in,?, 1, 4 the inclusion of the shift mode
leads to a dramatic improvement in the dynamic predictive power of the model.

Volume force actuation is chosen here as a simple control mechanism. It may physically represent a
Lorentz force in magneto-hydrodynamical flows, a simplified formulation of a plasma actuator, a buoyancy
term in the Boussinesq approximation, or an external pressure gradient in pipe flows. This actuation is
represented by a control term of the form ǫ gi on the right-hand side of the ith Galerkin system equation
(15), where gi := (ui,g)Ω is the time-invariant amplitude of the projection of the volume force field g on ui.
Alternative forcing may involve state dependent gi coefficients and require the inclusion of actuation modes7

in the Galerkin expansion (12).

i=0 i=1

i=3 i=2

Figure 11. Expansion modes, visualized by streamlines, derived from the natural attractor. In clockwise
order: the mean flow (i = 0), the first two POD modes (i = 1, 2) resolving 95% of the fluctuation energy at the
reference simulation, and the shift mode (i = 3).

B. Application to the Controlled Cylinder Wake

The natural attractor is dominated by the first harmonic of the periodic vortex shedding, represented by
modes u1 and u2 in Figure 11. These modes capture some 95% of the perturbation energy over the attractor.
The mean flow u0 and the unstable, steady flow us, shown in that figure, are structurally similar, and are
characterized by symmetry with respect to the x axis and a recirculation bubble in the near wake. The
transition to the attractor is characterized by a shortened recirculation bubble. The normalized difference
u0 −us is the shift mode u∆ = u3. (Thus the Fourier coefficient value a3 = 0 represents the attractora .) A
Galerkin system, based on these 3 modes is of the form

ȧ = A(a)a + Bǫ + η, s = Ca (16)

where a := [a1, a2, a3]
T , η = [0, 0, η3]

T is the constant term from (15), ǫ is the actuation command, s is the
sensor reading, and

A(a) :=







σr −(ω + γa3) −βa1

(ω + γa3) σr −βa2

δa1 δa2 −ρ






, B =







g1

g2

0






(17)

The sensor coefficient for a single sensor is C = [c1, c2, c3]. With multiple sensors, the matrix C will comprise
several rows of a similar form.

Dynamic features are transparent from this model, including a periodic attractor and a nearly parabolic
attractive invariant manifold of transients from perturbations of the steady solution (a1 = a2 = 0) to the
attractor (a3 = 0), in the unactuated flow.?, ?

Key aspects of actuation restrictions are clarified when (17) is expressed in cylindrical coordinates

[

a1

a2

]

= r

[

cos(φ)

sin(φ)

]

(18)

with r2 indicating the fluctuation level, and φ the flow phase.

aThe convention that a3 = 0 on the attractor is different from some of our previous notes, and results here with σr ≈ 0.

12 of 12

American Institute of Aeronautics and Astronautics Paper 2006-1407


	Introduction
	The Cylinder Wake Benchmark, Design Objective and Basic Actuation
	Empirical Control-oriented Galerkin Models
	Control Design with POD of the Natural Flow
	Interpolated POD Models
	Actuation Design With Interpolated Models
	Observer Design with an Interpolated Model
	SISO Control With Interpolated Models
	Optimizing Sensor Location and Observation with an Interpolated POD Model

	Conclusions
	Empirical Galerkin Models
	Basic Framework
	Application to the Controlled Cylinder Wake


