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Absrrm-A representation of actuation effects is developed for low- 
order empirical Galerkin models of incompressible fluid flows. These 
actuation models RI1 a missing link and, indeed, provide P key enabler 
towards feedback design in flow control utilizing empirical Galerkin 
models. A flow control strategy is proposed based on the extended flow 
models and on the design of dissipative feedback control. This strategy is 
ruccesrfully applied to benchmark flow control problems involving vortex 
shedding behind P circular cylinder. 

I. INTRODUCTION 

This proof-of-concept study concerns feedback flow control design 
with empirical Galerkin models. Feedback control is increasingly 
realized as a key enabler for stretching the dynamic range of operating 
conditions in aerodynamic applications. Examples are mixing and 
combustion control in engine combustors (e.g. screech prevention) 
and separation control for aggressive maneuvers of air vehicles. 

Feedback design begins with a choice of the number, location 
and basic characteristics of actuators and sensors. The exploration 
of good actuation and sensing solutions and eventual control design 
are prohibitively expensive with computational fluid dynamics (CFD) 
models. Low-dimensional flow models are therefore sought as prac- 
tical enablers. 

of remaining modified Karhunen-Lohe modes are derived in a 
Galerkin projection on the Navier-Stokes equation. The inclusion of 
the actuation modes in the Galerkin approximation is therefore a new 
and important aspect, addressing a well recognized gap in existing 
POD modeling practice that was inhibitive for the use of such models 
for control design. In 811, the corresponding mathematical framework 
for actuation effects is elaborated. In $111, this framework is applied 
to the actuated cylinder wake. 

11. ACTUATION EFFECTS IN EMPIRICAL GALERKIN MODELS 

The incorporation of actuation effects in empirical Galerkin models 
of incompressible flows in steady domains is discussed in this section. 
In 811-A, the standard approach [ I ]  is shown to hardwire the actuation 
and flow structure. In SII-B, a non-equilibrium model of [9] is 
briefly recapitulated, which has turned out to be a crucial enabler 
for capturing flow control transients. In §lI-C, the volume force is 
incorporated. In SII-D, the concept of dynamic actuation modes is 
introduced to separate imposed flow unsteadiness and the coherent- 
structure response of the flow. In 511-E. the unsteady body motion is 
shown to be resolved by a combination of a volume force and of an 
actuation mode. 

An efficient path to low-dimensional flow models is offered by the A qmn~nul ,..a~e~iwn nnnrnnr~ ,.. ... Y'-..,*s ..yp.Y"... 
empirical Galerkin method based on a Karhunen-Loeve decomposi- 
tion of flow data as.proper orthogonal decompo- 
sition Utilizing the low-order empirical ansatz as a 
viable framework for desiEnl-oriented models requires the abilih, 

- also Empirical Galerkin models are based on experimental flow data 
or on a direct numerical simulation. This simulation approximates 
a solution of the non-dimensionalized, incompressible Navier-Stokes 

(1) 
predict actuation effects. The implementation of Bctuation effects in Watton 

1 
empirical Galerkin models faces two principal challenges. First, the a t u + v .  (.U) = - v p +  a., 

1 L r  

actuation changes the flow, thus possibly requiring a reihaping ofthe where represents the location, the time, the velocity and the 
pressure. The Reynolds number Re = U D J v  is the order parameter 
and based on scales used for the non-dimensionalization, i.e. the 
velocity scale U, length scale D and the kinematic viscosity of the 
fluid v, The equation of continuity is expressed by 

dominant expansion modes. Secondly, the effect of actuation must 
be explicitly modeled as free input, i.e. the actuation frequency and 
amplimde must not be hardwired in the Karbunen-Lokve modes. 

The ubiquitous cylinder wake flow is used here to illustrate 
the oroblem. It has been considered under a varietv of actuation 
mechanisms, including volume forces [Z]. cylinder motion [3], local 
synthetic jets and zero-net-flow source / sink actuators [4], [ 5 ] .  So far, 
only few Galerkin models of controlled vortex shedding have been 
proposed [6].  Promising Galerkin approaches have been developed 
for near-wall actuation, including, e.g., a volume force implemented 
in an 8-dimensional model for skin-friction reduction [7] and a 
framework for the near-wall effect of the acoustic actuator [E]. 

In the present study, the hardwiring between wall and flow un- 
steadiness is removed by the incorporation of additional dynamic 
acfuorion modes in the Galerkin expansion. The amplitudes of these 
actuation modes are free actuation inputs, whereupon the dynamics 

v . u = o .  (2) 

The flow domain n is assumed to be steady and velocity fields 
are embedded in the Hilbert space of square-integrable vector fields 
&(Cl) with the inner product 

(u,v)n := dV U. v, U, v E &(Cl). (3) I 
The Galerkin approximation of the flow is expressed by 

N 

UlNI = a ,@)  U,(.), (4) 
1-0 
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where uo represents the time-averaged field and U,, i = 1 , .  . . , N, are 
Karhunen-Ldve modes, which form an orthonormal set with respect 
to the inner product (3). Time dependency is described by the Fourier 
coefficients a,. Following a notation of Rempfer [IO], a0 I 1 by 

is prescribed by a Dirichlet boundary condition for the velocity. In 
order to distinguish between ihe imposed unsteadiness and the flow 
response, the velocity field is decomposed as 

definition. In the snapshot method [I], the Karhunen-hive modes U, U = U0 + 8+ U', (6) . .  
are constructed as linear combinations of fluctuation snapshots U"' - 
UO. m = 1,. . . , M ,  M 2 N .  The chosen combinations minimize 
the averaged energy residual of the Galerkin ansatz (4) with respect 
to the snapshot ensemble. 

The Galerkin projection of the Galerkin ansatz (4 )  onto the Navier- 
Stokes equation (I) yields a system of ordinary differential equations 
[I]. 

N l N  C t ; j  aj + qij l: aj ab for i = 1 , .  . . , N, (5)  
d 
dt ' -  Re j=o 
-a. - - 

j,k=O 

where the linear and quadratic terms represent the viscous and con- 
vective Navier-Stokes terms, respectively, with constant coefficients 
l , j  := (U,, nuj)*, qijk := (u , ,V .  ( u ~ , u ~ ) ) ~ .  The pressure term 
may change the coefficients q i j k ,  but not the form ( 5 )  [ I l l .  

The Navier-Stokes simulation and the corresponding Galerkin 
model may describe a natural or forced flow. Forcing may, in fact, 
enhance certain coherent structures and thus help to reduce the 
dimension of the Galerkin model. Examples are the 4-dimensional 
model of Kelvin-Helmholtz vortices of a shear-layer [I  I] excited 
by periodic inlet condition and the 32-dimensional model of a 
transitional boundary layer manipulated by a periodic tripping wire 
upstream the observation region considered for the Galerkin model 
[IO]. Obviously, the chosen Galerkin approximation (4) and the 
Galerkin system ( 5 )  can - at best - reproduce that simulation 
and cannot describe the flow at other forcing amplitudes or at 
other frequencies. The Galerkin approximation is hardwired to that 
actuation and the Galerkin system has no free actuation input. This 
excludes the standard Galerkin modeling approach for control design. 

B .  ShijLmode 
As a non-equilibrium model for transient flow, the authors have 

elaborated the need for a shift-mode in [6 ] ,  [9].  This shift-mode 
ua is the orthonormalized mean-field correction and is aligned with 
the difference between the unstable steady Navier-Stokes solution U, 
and the time-averaged flow UO. Formally, the shift-mode ua and its 
amplitude aa can be considered as the N + 1-st mode, and Fourier 
coefficient, respectively. 

C. Volume force 
A volume force on the fluid flow may physically represent, for 

instance, a Lorentz force in magneto-hydrodynamical flows or an 
external pressure gradient in pipe flows. In this note, the force is 
assumed to be of the form L g with a time-dependent amplitude e ( t )  
and a location-dependent field g(x). This force has to be added on 
the right-hand side of the Navier-Stokes equation (I)  and leads to 
a forcing term of the form E g, on the right-hand side of the i- 
th Galerkin system equation (5). The coefficient g; := (u;,g)n is 
time-independent. This simple type of actuation is already elaborated 
in text books and is included here for reasons of completeness and 
nomenclature. Evidently, the volume force modifies only the Galerkin 
system and is a free actuation input. 

D. Woll-imposedJow unsteudiness 

The flow may be actuated by a flow unsteadiness at the boundary 
of the domain an. Examples are blowing and suction at the wall, 
an acoustic actuator, or a transverse wall motion. This unsteadiness 

where ~0 represents the time-averaged flow satisfying the time- 
averaged boundary condition, ii represents an incompressible velocity 
field such that uo + ii fulfills the instantaneous boundary condition, 
and U* is considered as the fluctuation which fulfills the homoge- 
nized boundary condition. The imposed unsteadiness fi is a design 
parameter. Its development may be guided by physical intuition. 

For reasons of simplicity, the imposed unsteadiness is assumed to 
be of the form 

ii = a.(t) uc(x), (7) 

where the normalized field u,(x) is called an actuofion mode and 
a, is the actuation amplitude. Formally, the actuation mode and its 
amplitude can be included as the mode i = -1 in the Galerkin 
approximation (4) 

where 0-1  := ac, U-1 := ue. In ( S ) ,  the Karhunen-Lobve modes 
minimize the energy residual of the approximation U* = U - 
uo - a-lu-1 zz a,(t)  u,(x). These modes are different from 

the standard Karh&&-Lobve modes which incorporate parts of the 
imposed unsteadiness. In the original ansatz (4), the coefficients ai, 
a = I , & .  . . , N cannot be chosen independently of the unsteady 
boundary condition for the velocity field. In contrast, the generalized 
Galerkin approximation (8) completely absorbs the unsteady Dirichlet 
condition in a-1 and allows any arbitrary choice of the Fourier 
coefficients a;, i = 1 , 2 , .  . . , N to be consistent with the boundary 
condition. 

The evolution equation of the Fourier coefficients is obtained via 
tbe Galerkin projection of (8) onto (I), 

N 

for i = I, 2, .  . . , N with f; := -(U;, U-])*. Thus, the actuation 
input a-1 enters the right-hand side of the generalized Galerkin 
system (S), in form of ;a first derivative, a linear term, and in the 
products with the free a,. i = 1 ,2 , .  . . , N .  

E. Unsteu& cylinder molion 

The proposed Galerkin method for volume and boundary actuation 
can easily be generalized for several forces or for several wall 
actuators including combinations thereof. In this section, only one 
combination for a transversely moving circular cylinder in uniform 
tiee-stream is considered. 

Let s, y be a Cartesian coordinate system where the flow is aligned 
with the x-direction. Without loss of generality, the center of the 
transversely moving cylinder shall be described by [0, Y ]  in a 
laboratory frame of reference. In a bodyfixed frame of reference, 
the cylinder is at the origin [0, 01 and the free-stream has a y- 
component v = -dY/dt .  This imposed free-stream unsteadiness 
shall be described by an actuation mode U-1 which vanishes on 
the cylinder and converges to U = (0, I] away from the cylinder. 
The actuation mode is chosen to be the rotated basic mode of a 
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mathematical Galerkin model [IZ]. The actuation mode thus essen- 
tially represents the transverse potential flow with a thick boundary- 
layer at the cylinder. The boundary-layer thickness corresponds to the 
parameters of the basic mode at Re = 10. This Reynolds number 
is determined by a typical transverse velocity which is one order of 
mamitude smaller than the free-stream Reynolds number 100. The 

denoting the time average. However, the expansion around the steady 
solution simplifies the form of the Galerkin system [ 9 ] :  

naz -UA 
/ i n >  - \'"I Galerkin model is numerically found to be insensitive to the choice 

of this parameter. The Karhunen-Lokve modes absorb a change in 
the actuation mode by construction (6). 

The imposed flow unsteadiness is given by 13 = a-1 U-1. a-1 = 
-dY/dt. In the cylinder-fixed frame of reference, the acceleration of 
the cylinder leads to a fictitious volume force -d2yld t2g ,  g = h11, 
on the right-hand side of the Navier-Stokes equation (I). 

Indeed, with the addition of the third shift-mode, this captures 
very transparently key ingredients of the wake flow [91: (i) The 
instability of the steady flow (represented by the zero state), (ii) the 
dominant oscillation frequency and its dependence on changes with 
the mean flow; (iii) the existence of an amactive inMriant manifold 
of transients from the neighborhood of the steady solution to the 
attractor. and (iv) the stabilitv of a limit cvcle attractor. Residual 

' 

' 

Neglecting the cylinder, the actuation mode represents a uniform 
flow U-, = [O, 11 and the Navier-Stokes equation (1) simplifies to 
&u = 0 and a,u = da- l jd t  = -dzY/dtz. In other words, the 
actuation mode term and the fictitious force annihilate each other. 
In the current cylinder wake study, this is numerically found to be 
approximately correct, and the actuation input enters mainly in the 
linear and quadratic terms. 

111. MODEL-BASED CONTROL OF VORTEX SHEDDING 

In this section, the framework outlined in $11 is applied the cylinder 
for two actuations, a local volume force and a transverse cylinder 
motion. The focus is placed on 'least-order' models which elucidate 
the main actuation mechanisms. 

A. The 'minimal' Galerkin model oflhe natural pow 

The laminar wake behind a circular cylinder has been studied 
extensively since about hundred years (see, e.g., the review article 
[l3]). In the current study, the flow is considered at the reference 
Reynolds number of 100, well above the laminar instability regime's 
critical value of 47 [14]. The natural flow is characterized by von 
K&" vortex shedding defining a periodic attractor. This attractor 
and the oscillatory transients leading to the attractor have been 
described in a reduced-order empirical Galerkin model [9].  This 
representation is briefly recapitulated here since variants for control 
are described in the following sections. A detailed discussion of the 
model and its properties can be found in the original publication. 

An energy-resolving model is obtained with the first eight 
Karhunen-Lokve modes which describe the first four shedding har- 
monics [15]. In fact, already the first pair captures some 96% of the 
perturbation kinetic energy in the near wake, an ample representation 
from a conlrol design perspective. However, a Galerkin model which 
is based on these two modes alone - essentially an ideal oscillator 
- leads to slowly growing unbounded oscillation amplitudes since it 
lacks the means to enforce the natural oscillation amplitude. Lacking 
a dynamic range, this model is therefore unsuitable as a basis for 
control design. A shift-mode (see $1143) is a key enabler for covering 
dynamic properties of the system. This mode captures the energy 
exchange between the mean flow and the oscillatory modes. 

The energy-resolving Galerkin model is reduced to a three-state 
'minimal' model in [9]. That model is based on the steady Navier- 
Stokes solution U,, the two leading Karhunen-L&ve modes U, and 
the shiftmode ua. The corresponding Galerkin approximation is 
given by 

u = u . + a ~ u , + a ~ u i + a ~ u n .  

This ansatz is equivalent to an expansion around the mean flow ug 

(4) since the mean flow is expressed by U# + (.A) U&, the brackets 

. ,  
quantitative discrepancies - well expected given the low dimension 
of (IO) - can be resolved, e.g., by invariant manifold methods and 
the addition of stability modes [9 ]  or by adaptation of the Galerkin 
coefficients [16]. 

B. Design objectives and constraints 

A standard design objective, mentioned above, is the attenuation of 
vonex shedding dynamics. This objective is motivated by engineering 
considerations including the reduction of oscillatory forces on ropes 
in water and on chimneys. Referring to the model (IO), this objective 
means that the amplitude r = 

The following comment concerns critical implications of using the 
Galerkin model (IO) and subsequent actuated variants for control 
design.. Any low order model of a truly distributed and nonlinear 
system is bound to be restricted to a narrow operating regime 
for which it is derived. Here, the model was derived primarily 
for and from the natural vortex shedding regime. The shiftmode 
enhancement extends this representation to the attractive invariant 
manifold of transients from the neighborhood of steady flow to the 
natural vortex shedding oscillations [ 9 ] .  A key aspect of this model, 
rooted in the physics of the system, is the natural vortex shedding 
frequency. If an actuated variant of ( I O )  is to be used for conuol 
design, it is therefore essential that the actuated system be maintained 
within its domain of validity. In particular, it is essential that the basic 
frequency will remain intact, and that the rate of forced change in the 
amplitude r will be (at most) similar to what can be found in natural 
transients, on which the model is based. Beyond this basic logic, this 
observation has been supported by both experimental and CFD based 
analysis, demonstrating the loss of control authority under modified 
frequency, as well as the accumulated experience in the fluid flow 
community with failures, when this warning was not heeded. 

In summary, the design task that is used as a benchmark in this note 
is the slow feedback attenuation of the amplitude r = m, 
subject to the constraint that actuation maintains the natural vorlex 
shedding frequency. The main purpose of this benchmark is to 
illustrate the new concept of actuation models as extensions of 
empirical Galerkin models of fluid flow systems and their use in 
control design. We therefore do not dwell here on observer design 
and sensor signal feedback. Those were discussed in [6], [17]. 

C. Actuation model for a volume force 
The actuation model for a volume-force actuator is comparatively 

simple (see §lI-C). The control input is the modulation factor denoted 
by r(t) .  An important aspect is that this force is assumed to have 
no effect on the Karhunen-Lotve expansion modes in the Galerkin 
approximation. Consequently, its effect on the Galerkin system is the 
addition of a linear term 5 c. 

, 

has to be attenuated. 
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In an exairgle considered in [6] ,  actuation is provided by a 
transversal volume force, supported over a disc in the near-wake as 
illustrated in Fig. 1. Due to the y-axis symmetry of the shift mode, 

Fig. 1. Principal sketch of the achlated cylinder wake. The cylinder is 
represented by the black disk. The location of the volume-farce acluatar 
(A) is indicated by a grey circle, and the transverse cylinder motion (E) by 
arrows. Stream-lines represent the nahlral fbw. The figure includes B hot-wire 
anemometer at a typical experimental position. This sensor has been used in 
an observer-based control using a Galerkin model (61. 

the projection of this volume force on the shift mode vanishes. The 
inclusion of the volume force amounts therefore to the addition of a 
term BE = bl, gz, OITe on the right-hand side of (10). Discussions 
of aspects of control design with this volume force actuation has 
already been presented in [6] ,  [I71 and are therefore left out here. 

D. Actuation modeljor un oscillaring cylinder 
Here, actuation is provided by forced, nearly periodic vertical 

motion of the cylinder in short strokes (see Fig. 1). In open-loop 
actuation (used to obtain the vortex shedding POD modes), the 
transverse motion is prescribed by Y = 0.1 SinWt (See §&E). 
The frequency w is assumed from the natural shedding. This form 
of actuation was considered in [3]. One modeling challenge, is 

conditions in the computation domain. It is therefore convenient to 
synchronize the spatial frame of reference with the center of the 
cylinder, whereby the boundary becomes stationary. Consequently, 
however, the free flow now includes a global sinusoidal vertical 
component. The necessary changes in the Navier-Stokes equation 
and its boundary conditions, and the corresponding of the 
Galerkin model were outlined in 811-E. 

for actuated conditions in analogy to the natural flow. The Galerkin 
approximation is given by an N = 2 truncation of (8) with an added 
shift- and actuation-mode, 

~ i ~ .  2. Galerkin approximation (11). The modes include ~n achlation 
representation for the oscillating cylinder and are depicted by streamlines: 
(a) The acNation mode, (b) the (unstable) steady fbw U (c) the naNral 
mean-fbw U 0 (i.e.. under vortex shedding), (d) the shift-mode UA, end (e), 

shedding harmonic. The plots (c,e.Q were derived from a Karhunen-Loke 
decomposition cylinder at o . ~ ~ . ~ t r ~ k ~ ~  and at the 
naNral vortex shedding frequency. They are qualitatively very similar to their 
cowllerpart for the static cylinder. 

the moving boundary the cylinder) and hence, the boundary (9, the Karhunen-mve m&s UI and w. representing the first VmeX 

apen.~oop 

A second difference from the volume force case is the contribution 
of the added term dzY/dt2 on the right-hand side of the Navier- 
Stokes equation. The contribution of this transverse field, is again 
Principally captured by uc, and is reflected by a second added term, 
proportiona1 to da*ldt. 

The force-units term c = da,/dt is viewed as a control input, 
in terms of which the system fits into a conventional, pseudo-linear 

d -a = A(a)a + Bc 
dt 

the form 

the current shldy, a minimal ~ ~ l ~ ~ k i ~  model is 

U = us + a1 UI + az uz +a& ua +a, uc. 

Figure 2 visualizes the employed modes. Note that the base flow is 
the steady solution, as in §IIl-A. 

One main consequence is that actuation - represented by a, - 
effects the velocity field itself, whereas the volume force effects only 
its derivative (i.e. fluid acceleration). To be more specific, the fact 

( I l l  pattern 

(12) 

where the matrices A(a) 

K A  + OcAUc zi 0 I that the actuation mode uc is not orthogonal to the oscillation modes A = [ i ~ f i t ~  aaz - uC2ac -aa 

w + FA -Pal i Ala, 
a0 -0az t Am. 

0 0 means that the expressions for the time derivatives of $[a, ,  a2, a h ]  
will include contributions of both a, and of its derivative, daJdt, (13) 
as obtained from the projections in the U, and uz directions, 
respectively, of the time derivative of (1  1). The projection along ua 

and B = [b,, bz,  0, 1IT. Numerical parameter values were obtained 
from a numerical Galerkin projection: a. = 0.0471, U A  = 0.0602, 

vanishes, due to y-axis symmetry of this mode, = 0.9431, y = 0.0292, a = 0 = 0.0226, aCl = &I = 0.0358, 
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a,? = PCZ = 0.206, = 0.0110, ni = -0.7416, K Z  = -0.5245, 
K A  = -0.0164, bl  = 0.0558 and bz = -0,0182. In Fig. 3. the direct 
numerical simulation. the enerw resolvine Galerkin model. and the 

A nearly periodic actuation at the oscillation frequency is of the form 

a, =r,cos(d+e,),  xac = -$rcsin($+ec),  
d - R& UI. II 

minimal model (12) are compared for the cylinder wake under open- 
loop actuation. Even the minimal model is seen to approximate well 
the Navier-Stokes attractor. 

where the approximation is justified hy the fact that rc and 8,  are 
slowly varying and d$/dt  is represented by the right hand side of 
(16). In fact, if successful, the proposed control policy will be such 
that d4ldt  could he further approximated by its slowly varying, 
dominant term, w + -pa. The purpose of control design is the 
selection of the slowly varying phase shift 8, and amplitude rc. 

Denote [cl, CZ] = [nl + pica,, K Z  + Pz.aa]. In these terms, 

: 
~ 

g. = $ rc [(cl - b z 3 )  sin(24 + 8,) + (cZ + bl $$) cos(24 + e,) 
- (CI + bzd) sin(&) + (c, - bl$)  cos(&)] . 

(17) 
-1 and 

-1 - I  0 a, 1 gp = f rc [(ci - b z s )  cos(24 + 8,) - (CZ + b l 2 )  sin@$ + 0,) 
' 

+ (CI + b z $ $ )  cos(&) + (CZ - bl%) sin(&)] . ,.-. 

-:tu 
Fig. 3. Galerkin attactor of the wake behind the cylinder transversely 
oscillating with Y = 0.1 sinwt at the natural shedding frequency w. The 
figure displays a phase portrait with the Fourier coeffi cients of the von k m & n  
modes 01, a2 for the simulation (solid line), the energy-resolving Galerkin 
model (e) and the minimal phase-invariant Galerkin model (0) .  

E. Dissipative control ofthe oscillafing cylinder model 
The purpose of design, stated in 8111-B, is the slow attenuation 

of r subject to the constraint that the natural oscillation frequency 
w + TRA he left (essentially) intact. The special structure of the 
system and intended actuation will be utilized to address this task in 
the nonlinear (12). 

The true actuation command in this system is the force applied to 
the cylinder, or, indeed, the voltage applied to the motor producing 
that force. Yet, a much simpler setting is used here: As noted earlier, 
effective achlation of the cylinder wake is restricted to the natural 
vortex shedding frequency. In this sense, actuation is limited to 
slow modulation of the phase and amplitude of a periodic motion 
at the natural frequency. The narrow bandwidth of the closed loop 
system justifies an instantaneous response assumption - ignoring the 
actuator's internal dynamics. 

Focusing on nearly periodic motion and actuation, it is convenient 
to move to cylindrical coordinates, [RI ,  az] = [sin($), cos($)]r, 
transforming the original system to the form: 

where 

(1BJ 
Each of the terms in (17) and (18) comprises a term involving the 
second harmonic of 4 and a slowly varying term. The contribution 
of the zero-mean, second harmonic terms to the narrow bandwidth 
dynamics in (14) and (16), is negligible. Considering the contribution 
of the slowly varying terms, it is noted that the terms multiplying 
the vector [cos(0,),sin(6',)lT in (17) and in (18) are mutually 
orthogonal. The objective to maximize the amplitude of a negative 
"dc" component of gr (for a given stroke amplitude rc) and the 
constraint requiring to annihilate the "dc" component of gP. by the 
same selection of e,, are therefore complementary. Thus, 8, has to 
be selected to achieve the desired alignment 

-ci - bz * sin(0,) [ cz - b 1 2  ] * [ cos(&) 

The minus sign is used here, to serve the goal of attenuating vortex 
shedding. A plus sign would have been used if amplification were 
desired. The value of the "dc" component of gr is then 

To be effective, the actuation amplitude T= must be selected large 
enough to tum the (averaged) (14) dissipative; e.g., rc = 2(p+u.  - 
paa)r/r,, leading to the closed loop behavior: 

(19) ' 
d 
dt "' 

In that case, the design parameter p is kept small enough in order not 
to exceed natural transient rates for which both the original model 
and the "slowly varying dc componenf' hypothesis are valid. The 
maximum allowed stroke is a design constraint and the preceding 
analysis reveals Z(u. - paa)r/T,  as a lower bound. The design 
considerations above did not relate to the dynamics of RA. The 
rationale is that once both r and rc decay, RA will follow, as dictated 

-7 = - 

' 

d by (15). 
gr = Sin('$) [KI  + 8 l c R A ]  Rc + bl  p) Results are presented here from a simulation with the selection of 

p = 0.02, and relate to a trajectory that begins at the amactor and 
terminates near the stabilized steady flow. Figure 4 depicts an actuated 
transient under closed-loop dynamics of a,. From the same figure, the 
oscillation amplitude can be seen to decrease as control is turned on. 
A logarithmic scale counterpart of r (not shown) reveals the nearly 
exponential decay rate, as predicted. The closed-loop dynamics of 
d$/dt implies a frequency which decreases as one approaches the 
fixed point. The distance from the fixed point is characterized by 

( 
( d ,  

( d l  
[Kz +&%A] ac + bzzac)  . 

+COS('$) 

[m + CGAR, - (Oci sin($) + Pcz cos($)) T] R , ,  

[Kz + OZCRA] RC + ba;itRc , 

ga 

g p  = Cos($) [Ki + PlcRa] a, + bi -a, 

= 

dt 
d 
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Fig. 4. Transient from natural shedding with a fixed cylinder (t < 0) 
to closed-loop actuation with a moving cylinder ( t  > 0). The time t is 
normalized with the period T. Fmm top to bottom: the actuation amplihlde 
a,, the first Fourier coefficient 4, the shifl-mode amplitude aa, and the 
phase difference 8, in degrees. 

aa. An intriguing result is the change of the phase difference 0, 
as one approaches the fixed point. The necessity of a varying phase 
difference to stabilize the near-wake has numerically observed by [3]. 

Figure 5 shows a phase-space closed-loop dynamics of the state 
vector a. 

m:I 0.5 

0 
2 

Fig. 5 .  Phase-space dynamics for the trajectory displayed in Fig. 4. 

IV. CONCLUSIONS 
A novel actuation representation for the empirical Galerkin method 

has been proposed for imposed flow unsteadiness. Its applicability 
has been illustrated for vortex shedding behind an oscillating cylinder. 
This actuation model removes the hardwiring between the Karhunen- 
Loeve modes and the cylinder motion of the reference simulation. 
In other words, the cylinder motion is a free actuation input in 
the modified Galerkin system. Thus, the enhanced model enables 
dissipative controldesign for the attenuation of vortex shedding. The 

Navier-Stokes simulation with open-loop actuation is well reproduced 
by that model. For closed-loop attenuation of vortex shedding, a 
dissipative controller is successfully developed for that model. Recent 
results show an effective near-wake suppression of vortex shedding 
due to the described control in the full system, the Navier-Stokes 
simulation, as will be described in a separate study. For wake 
control with a volume force 161, similar controllers have reduced 
the fluctuation level close to the lowest achievable bound in direct 
numerical simulations. 
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