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A flow model which is accessible to control design must combine low dimension, robust-

ness and a simple structure with an ample dynamic range to cover controlled transients.

Key enablers are reviewed in the context of empirical Galerkin models and are exemplified

for incompressible shear flows. These enablers include ‘subgrid’ turbulence and pressure

representations, hybrid models that combine multiple operating points, and actuation mod-

els. The range of model validity is identified in terms of invariant manifolds which can be

exploited by observer design and has to be respected by controller design.

Nomenclature

x Location
êx,êy,êz unit vectors in x-, y-, and z-direction
x,y,z Cartesian coordinate system
Ω Domain
ycyl Transverse position of the cylinder
t Time
u,v Velocity fields
u0 Base flow (mostly: averaged velocity field)
u
′ Fluctuation of the velocity field

u
′

inhom Wall-imposed fluctuation
u
′

hom Free fluctuation (flow response)
p Pressure field
gα α-th volume force
Γα Amplitude of α-th volume force
NΓ Number of volume forces
Re Reynolds number
ν Reciprocal of Reynolds number
ui i-th actuation mode for i < 0; i-th expansion mode for i > 0
u

[N ] Galerkin approximation with N modes
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ai Fourier coefficient of the i-th mode
N ,NEM Number of expansion modes
NKL Number of Karhunen-Loeve modes
NA Number of actuation modes
lij , qijk, giα Galerkin system coefficients
l+ij , q+

ijk Galerkin system coefficients for additional physics processes

(turbulence and pressure representation)
νT,i Modal eddy viscosity associated with the i-th mode
δij Kronecker symbol

I. Introduction

A framework is presented for the construction of low-dimensional Galerkin models targeting feedback flow
control applications. The feedback component is necessary for the low-amplitude suppression of instabilities,
like the reduction of vortex shedding.1–3 Energy-effective amplification of coherent structures may also
benefit from a feedback component. These benefits include the stretching of the dynamic range of operating
conditions and the consideration of unmodelled dynamics like disturbances and off-design conditions.4,5

Feedback flow control applications are designed to manipulate coherent structures for the control goal.
This manipulation has many degrees of freedom in actuation, sensing, and control design. Examples are
the choice of the kind of actuators, their placement, their operating frequency and amplitude range, in
addition to similar decisions for the sensor. However, the exploration of good actuation, sensing, and control
solutions with high-dimensional computational fluid dynamics models is prohibitively expensive. In addition,
practical feedback design requires a low dimension of the model excluding a CFD flow model. Therefore,
low-dimensional models of the coherent structures are sought as practicable enablers.

The empirical Galerkin method based on a Karhunen-Loève decomposition of flow data offers an efficient
path to control-oriented models.6 The promise of the method is that the resulting model predicts the
actuation effect on a neighborhood of flow states, i.e. describes more than the reference simulation. However,
the standard empirical Galerkin model (as described in Ref. 7) is known to be over-optimized for the reference
data.8 Significant advances to overcome this shortcoming have been made in recent years. These advances
allow to extend the dynamic range of the model9–13 and to incorporate actuation.14–16 A low-dimensional
flow representation allows also to identify good sensor locations.17,18

The current manuscript describes key enablers to enhance the applicability of empirical Galerkin models
for model-based feedback flow control. The manuscript is organized as follows: In §II, the ‘standard’ Galerkin
method is reviewed. A toolbox with generalizations is described in §III. The toolbox include a pressure-
term representation, a ‘subgrid’ turbulence representation, non-equilibrium modes, and actuation models.
Their necessity is illustrated for the laminar shear-layer (§IV), the turbulent mixing layer (§V), the transient
cylinder wake (§VI), and the actuated cylinder wake (§VII). The main findings are summarized in §VIII.
The discussed Galerkin modelling toolbox is employed in a feedback flow control study which is described
in a companion paper (Part II) at this conference.19 That paper proposes also methods for controller design
and dynamic estimation.

II. Galerkin method

In this section, the ‘standard’ empirical Galerkin method is reviewed.
A flow model is expected to approximate the solution of an initial boundary value problem for the velocity

u and the pressure field p subject to suitable boundary and initial conditions. The non-dimensionalized
evolution equation consists of the continuity equation,

∇ · u = 0, (1)

and the Navier-Stokes equation,
∂tu + ∇ · (u u) = −∇p + ν4u, (2)

where the reciprocal of the Reynolds number is denoted by ν := 1/Re.
The velocity field in the physical domain Ω is approximated by a finite expansion in terms of N space-
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dependent expansion modes ui and the corresponding time-dependent Fourier coefficients ai,

u(x, t) ≈ u
[N ](x, t) :=

N∑
i=0

ai(t) ui(x). (3)

For later reference, a basic mode u0 with amplitude a0 ≡ 1 is included.
This ansatz includes the computational Galerkin method20 which is based on expansion modes with a

local compact support on grid cells, e.g. FEM ‘hats’. Their advantage is to describe a large class of transient
solutions from different initial conditions. The price is a high dimension.

We trade generality and accurateness for low dimension and robustness and follow the traditional Galerkin
method.20 This method is based on a Hilbert space for the fluctuation u

′ := u−u0. A typical choice of the
Hilbert space is the set of square-integrable solenoidal vector fields ∈ L2(Ω) with the corresponding inner
product between two vector fields u, v,

(u,v)Ω :=

∫

Ω

dV u · v. (4)

Orthonormality, i.e. (ui,uj)Ω = δij , and smoothness imply that the modes are global, i.e. are non-vanishing
almost in the whole domain Ω. Moreover, the definition of these modes are independent of a grid.

The empirical Galerkin method6,7 based on the Karhunen-Loève decomposition leads — by construc-
tion — to the least-dimensional representation of a single operating condition determined by the reference
simulation. We do not follow mathematical 21 or physical22 Galerkin approaches, since they are too high
dimensional and less applicable for complex geometries.

In the traditional Galerkin method, the evolution equation of the Fourier coefficients is derived from the
Galerkin approximation (3) by a Galerkin projection of the Navier-Stokes equation (2) onto the expansion
modes ui.

7 The resulting Galerkin system has the form

d

dt
ai = ν

N∑
i=0

lijaj +
N∑

i=0

N∑
j=0

qijkajak, (5)

where lij := (ui,4uj)Ω and qijk := (ui,∇ · [uj uk])Ω. Typically, the pressure term is neglected — often for
justifiable reasons.

The empirical Galerkin model (3,5) may accurately reproduce the reference simulation in a low-dimensional
manner. However, the model tends to be over-optimized for that reference condition. In particular, the per-
formance tends to rapidly deteriorate with changes of Reynolds number8 or even in the neighborhood of the
attractor.11,23 Current modelling efforts by this team are directed towards exploiting the low-dimensionality
of the empirical approach and enhancing the range of validity by incorporating select information contained
in physical or mathematical models.

III. Toolbox for control-oriented models

Control applications suggest 6 minimum requirements for such a control-oriented model (Fig. 1). These
properties include a dynamics representation for

(a) the natural flow (I) as initial condition,

(b) the actuated flow (II) not far from the desired controlled flow,

(c) the natural transient from (II) to (I), i.e. the transient when actuation is turned off,

(d) the actuated transient from (I) to (II),

(e) the suitability of the model for control design, and

(f) the possibility of observer design from one or more sensor signals.
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natural transient

observer design

controller design

forced transientc d

e

fforced flow 

natural flow I

IIb

a

Figure 1. Minimum requirements for a Galerkin model which shall be suitable for control design.

From requirements (a–d), the model may be expected to describe actuation effects in the neighborhood of
the natural (I) and the actuated flow (II). In that range of validity, the model may replace more expensive
Navier-Stokes simulations for control design purposes and for exploratory actuation studies.

The Galerkin ansatz (3) with NKL = N Karhunen-Loève modes may resolve the coherent-structure
dynamics of the reference operating condition. However, the Karhunen-Loève decomposition at one operating
condition, e.g. one Reynolds number, cannot be expected to be accurate at another condition, e.g. another
Reynolds number.8 Both, the mean flow and the Karhunen-Loève modes change with flow parameters and
actuation, as illustrated in Fig. 2a.
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(a)

 

u,

u,
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(Reynolds decomposition)

flow response

boundary−imposed

fluctuation

(triple decomposition) unsteadiness

to boundary−imposed
unsteadiness

Karhunen−Loeve space

Karhunen−Loeve space

(b) .

Figure 2. Principal sketch of the decompositions leading to the modes in Fig. 3. Fig. (a) shows Karhunen-
Loève decompositions at two different operating conditions (I) and (II). Fig. (b) illustrates the Karhunen-Loève
decomposition based on the boundary-imposed unsteadiness u′

inhom
satisfying the inhomogeneous boundary

condition and the flow response u′
hom

obeying the homogenized boundary condition.

One straight-forward approach to describe two or more operating conditions in a single ansatz consists by
adding non-equilibrium modes ui, i = NKL + 1, . . . , NEM in the expansion.10,11 Orthonormality is enforced
in the enlarged set of NEM expansion modes. Note that the order of the included operating condition affects
the individual expansion modes but does neither change the Galerkin space spanned by the generalized ansatz
nor the dynamics of the Galerkin system. Snapshot ensembles comprising several operating conditions9 or
the transients under chirp forcing13 serve the same purpose.

The effect of acoustic actuators, moving walls, or oscillating free-stream is hardwired to the flow response
— even in the generalized Galerkin approximation. To design this form of actuation as a free control
input, the fluctuation is decomposed in a boundary-imposed unsteadiness u

′

inhom satisfying an inhomogeneous
boundary condition and a flow response u

′

hom (see Fig. 2b). The imposed unsteadiness is modelled by NA

actuation modes ui, i = −NA, . . . ,−1 and their amplitudes are a free control input.14–16 Note that this
decomposition is far from being unique and that the choice affects the Karhunen-Loève space and hence all
other expansion modes.

Summarizing, the generalized Galerkin approximation consistent with requirements (a-d) is expressed by

u =

NKL∑
i=0

ai ui +

NEM∑
i=NKL+1

ai ui +

−1∑
i=−NA

ai ui. (6)

The role of the modes is summarized in Fig. 3a. The resulting generalized Galerkin system is obtained from
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pre−determindedi=−NA
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Figure 3. Principal sketch of the expansion modes including the physical, dynamical and energetic role. In
Fig. (a) the modes used in this study are enumerated and explained. In Fig. (b) the energetic role of the
expansion modes is elucidated. Each mode is visualized by a circle and the corresponding energy flows by
arrows. Arrows connecting the mode with the convection term, with the dissipation, and with pressure power
box represent the sum of modal production and convection, the modal dissipation, and the modal pressure
power, respectively. Arrows between the modes contribute to the transfer term. The direction of the arrow
is aligned with the direction of the energy flow. The non-equilibrium modes vanish in the long-term limit
without forcing.

a straight-forward Galerkin projection,

d

dt
ai = ν

N∑
i=−NA

(lij + l+ij) aj +

N∑
i=−NA

N∑
j=−NA

(qijk + q+
ijk) ajak +

−1∑
α=−NA

giα

dai

dt
+

NΓ∑
α=1

giα Γα. (7)

The α-th actuation mode gives rise to an acceleration term giα daα/dt in the i-th evolution equation, where
giα := (ui, uα)Ω, α = −NA, . . . ,−1.

Eqn. (7) incorporates also a Galerkin representation of the NΓ volume forces Γα gα. That representation
is the term Γαgiα, where giα := (ui,gα)Ω, α = 1, . . . , NΓ.

The Galerkin system coefficients lij , qijk are derived from the viscous and convective Navier-Stokes
term in complete analogy to Eqn. (5). The additional coefficients l+ij , q+

ijk allow to incorporate new physics
processes. One example is the ‘subgrid’ turbulence representation for the effect of dynamically unresolved
fine-scale Karhunen-Loève modes i > NKL. As indicated in Fig. 3b, these modes tend to act as energy sinks
on the resolved modes via the transfer term. This dissipative effect can be linearly modelled by a modal
eddy viscosity,24

l+ij := νT,i lij .

The eddy viscosity νT,i is uniquely determined by a modal energy flow balance.25

Another example for physical process is the pressure term12,26,27 which is described by additional
quadratic Galerkin system coefficients q+

ijk. It should be noted that a model calibration for one operat-
ing condition may or may not be applicable to another operating condition.

Table 1 summarizes the discussed generalizations of the empirical Galerkin model as a toolbox.

IV. Laminar mixing layer

The necessity of the pressure model in the Galerkin ansatz is exemplified for the Kelvin-Helmholtz vortices
in the 2D shear layer (see Fig. 4a). The Reynolds number is 150 based on the maximal velocity and the
initial vorticity thickness. The streamwise size of the computational domain covers 2 wavelengths. Details
of the corresponding simulation and model are discussed in Refs. 26, 27.

A four-dimensional energy-resolving empirical Galerkin model is constructed for this periodic flow. The
first 2 Karhunen-Loève modes describe 99.5% of the fluctuation energy. Higher Karhunen-Loève modes
resolve higher harmonics and have a small energy content since the fluctuation amplitude at the inflow
boundary is 1% and non-linearity is insignificant in the considered regime.
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Table 1. Generalizations of the ‘standard’ Galerkin model

aspect generalization of the
Galerkin approximation
— kinematics —

generalization of the
Galerkin system
— dynamics —

flow non-equilibrium modes, e.g.
• shift mode
• stability eigenmodes
[task b–d of Fig. 1]

pressure-term representation, e.g.
• analytical model
• empirical model
‘subgrid’ turbulence model, e.g.
• single eddy viscosity
• modal eddy viscosities
[task a of Fig. 1]

actuation actuation models, e.g.
• actuation mode for
boundary-imposed unsteadiness
[task b,d of Fig. 1]

actuation models, e.g.
• representation of a pressure force
and
• a volume force actuation
[task b,d of Fig. 1]

feedback
flow control
element

observer
[task f of Fig. 1]

controller
[task e of Fig. 1]
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0.4

a1-4

(c)

Figure 4. 4-dimensional Galerkin model of laminar 2D Kelvin-Helmholtz vortices.26 The velocity ratio of
both streams is 1:3 and the coordinates are non-dimensionalized with the initial shear-layer thickness. Fig. (a)
displays iso-curves of the v component of a DNS snapshot in the computational domain. Fig. (b) visualizes the
energy terms in the equation for the turbulent kinetic energy, i.e. production, dissipation, convection term,
transfer term, and pressure power. The residual is the sum of these terms and should vanish in a well-resolved
DNS. The energy-flow terms are normalized with the fluctuation energy K. Thus, the ordinate represents the
fraction of fluctuation energy which is produced or dissipated per convective time unit. Figure (c) illustrates
the Fourier coefficients of a 4-dimensional Galerkin model with pressure-term representation. The coefficients
a1 (•), a2 (◦), a3 ( ) and a4 (2) depend on the time t which is normalized with the period T . The solid lines
are corresponding DNS results.

An energy flow analysis of the fluctuation (see Fig. 4b) reveals that the pressure power is an energy
sink which is comparable to viscous dissipation in magnitude. Neglecting the pressure term in the Galerkin
model gives rise to a large amplitude over-prediction — even if the number of modes is increased. An
analytical pressure-term representation26,27 derived from the pressure-Poisson equation is the key enabler
for an accurate Galerkin system of the flow (see Fig. 4c).
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V. Turbulent mixing layer

The necessity of a ‘subgrid’ turbulence representation for high-Reynolds number flow is demonstrated
for a LES reference simulation of mixing layer28 (see Fig. 5). The velocity ratio is the same as for the
DNS described in §IV, but the streamwise domain size is almost 5 times larger (measured in shear-layer
thicknesses). The inlet tanh profile is 5% perturbed in spanwise direction to enhance the formation of
spanwise rib vortices.
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Figure 5. 3D LES simulation of a turbulent mixing layer.28 The velocity ratio is 1:3, like in Fig. 4, but the
domain is much longer. Fig. (a) represents the iso-curves of the v component of the spanwise averaged flow.
Fig. (b) displays energy flow terms. In the LES, a residual energy sink comprising the subgrid dissipation and
the pressure power has to be modelled.

An energy flow analysis (see Fig. 5b) of the LES data reveals an residual energy sink comprising the
subgrid dissipation and the pressure power. The sink is modelled in the Galerkin system by the modal eddy
viscosity ansatz described in §III. Neglecting this energy sink typically leads to diverging Galerkin solutions
— independently of the number of Karhunen-Loève modes.

A 20-dimensional Galerkin model with subgrid turbulence representation resolves already 85% of the
fluctuation energy in the LES and captures well the spatio-temporal dynamics of the Kelvin-Helmholtz
vortices and resulting vortex merging (see Fig. 6).
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(a)
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0

10

20
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(b)

Figure 6. 20-dimensional Galerkin model of the LES displayed in Fig. 6. The first Fourier coefficient a1(t) is
illustrated in dependency of the time t for the LES (a) and the Galerkin system (b).

VI. Transient cylinder wake

The two preceeding sections address additional physics models of the Galerkin method for the attractor
dynamics. These generalizations change the coefficients of the Galerkin system (5), but do not require a
modification of the Galerkin approximation (3). In this section, the need to enrich the Galerkin phase space
is exemplified for the transient cylinder wake behind a circular cylinder.

The standard Galerkin method8 describes accurately the period vortex shedding at the reference Reynolds
number with only 8 Karhunen-Loève modes. Yet, it over-predicts the transient time from the steady solution
towards this limit cycle by one order of magnitude.11 This over-prediction is not too surprising realizing
that the Galerkin ansatz is optimized for a single operating condition (I), the periodic vortex shedding. The
second operating condition (II) near the steady Navier-Stokes solution is not adequately captured by this
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ansatz. This operating condition is well characterized by linear stability theory,29 i.e. the velocity field can be
described by the steady solution, the real part of the most amplified complex eigenmode, and its imaginary
part (see Fig. 7a–c). Neither the steady solution nor the stability modes are quantitatively well represented
by the Karhunen-Loève decomposition — independently of the number of employed modes11!

(a) steady solution (b) real part of the first stability
eigenmode

(c) imaginary part of the first sta-
bility eigenmode

(d) averaged natural flow (e) 1st Karhunen-Loève mode of the
natural flow

(f) 2nd Karhunen-Loève mode of
the natural flow

(g) averaged actuated flow (h) 1st Karhunen-Loève mode of an
actuated flow

(i) 2nd Karhunen-Loève mode of an
actuated flow

(j) shift mode associated with (a)
and (d)

(k) actuation mode (l) 4th Karhunen-Loève mode of
natural flow

Figure 7. Modes for Galerkin models of the natural, transient, and actuated cylinder wake at Re = 100.
The actuation is provided by a transverse cylinder oscillation at the velocity amplitude 0.1 and the natural
shedding frequency (see Ref. 19). In all figures, the flow is visualized with streamlines. Positive values of the
streamfunction are highlighted by thick curves.

These three phase-space directions are added to the 8-dimensional Galerkin ansatz (see Fig. 7d–f,l) as
orthonormalized non-equilibrium modes. The resulting 11-dimensional model describes well transients from
the steady solution to periodic vortex shedding, including the initial growth-rate (see Fig. 8a).

The reason for the large impact of three additional modes can be monitored — again — by an energy
flow analysis near the steady solution (see Fig. 8b). The normalized energy flow terms can be determined
from the stability eigenmodes in the limit of small amplitudes. The normalized net production (‘excess’)
drives the instability and is twice the growth-rate. Only one third of this net production is resolved within
the Galerkin approximation enriched by the shift mode. The standard Galerkin model centered around the
mean flow resolves only a tiny fraction of the net production.

The phase-space dynamics of the 11-dimensional Galerkin system are sketched in Fig. 8c. Near the steady
solution, the trajectory spirals outward on a plane spanned by the stability eigenmodes. The Reynolds
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Figure 8. Transient cylinder wake from the neighborhood of the steady solution to the periodic vortex shedding.
In Fig. (a), the fluctuation energy is shown as a function of time t normalized with the shedding period T . The
curve represents a DNS, the open (solid) symbols the 8-dimensional (11-dimensional) Galerkin model.11 This
model contains modes (b,c,d,e,f,j) and higher harmonic modes like (l) of Fig. 7. In Fig. (b), the normalized
energy flow terms are presented for the neighborhood of the steady solution in the mean-field limit. The
pressure term can be neglected. The ‘excess’ drives the instability. In Fig. (c), the role of the modes is sketch
for the transient dynamics.

stresses give rise to a non-vanishing shift-mode amplitude (see Fig. 8j) and guide the trajectory on an
inertial manifold (paraboloid). During the transient phase, the oscillation ‘plane’ changes as the limit cycle
is approached. These dynamics are a particular case of the more general Fig. 2a. The shift-mode connects
two operating conditions whereupon the remaining two non-equilibrium modes allow to calibrate changes of
the ‘principal axes’. Further details are provided in Ref. 11.

VII. Actuated cylinder wake

In this section, the implementation of the Galerkin modelling toolbox for the forced cylinder wake is
outlined. Two actuations are considered, a volume force behind the circular cylinder and the transverse
oscillation of this obstacle.

The uniform volume force is applied in a circular disk of cylinder size on the center line with one diameter
distance from the cylinder. A Galerkin model based suppression of vortex shedding is described achieving
83% of the achievable benchmark problem. Further details are provided in Ref. 30.

In addition, suppression of vortex shedding with transverse cylinder oscillations is considered in Part
II.19 The Galerkin model employed in that paper shall briefly be outlined, here. The flow is described in a
Cartesian cylinder-fixed coordinate system x, y, where the x-axis is aligned with the flow and the y-axis is
perpendicular to the flow and the cylinder axis. In that coordinate system, the cylinder motion ycyl gives
rise to a ficticious acceleration force −ÿcyl êy in the Navier-Stokes equation (êy: unit vector in y direction)
and a corresponding term in the Galerkin system (7).

In addition, the cylinder motion leads to a tranverse velocity component −ẏcyl êy in the free-stream
condition. This boundary-imposed unsteadiness is incorporated in a single actuation mode u

′

inhom = a−1u−1

(see Figs. 2b and 7k). This actuation mode is a rotated basic mode of a mathematical Galerkin method.21

The first two Karhunen-Loève modes representing the ‘flow response’ contribution of the fluctuation are
visualized in Fig. 7h,i. Here, the cylinder oscillates according to a−1 = −ẏcyl = 0.1 cos ωt, where ω represents
the natural vortex shedding frequency. Roughly, the 10% fluctuation level in the free-stream leads to a similar
increase in the energy level of the Karhunen-Loève modes. The recirculation length of the mean flow (Fig.
7g) is reduced and the activity center of the Karhunen-Loève modes is shifted towards the cylinder.

A ‘minimal’ four-dimensional Galerkin model is constructed employing a two-dimensional Karhunen-
Loève decomposition, the shift mode, and the actuation mode. This minimal model describes well the open-
loop forcing of the natural flow and can be used to identify a good controller for the initial suppression.16 The
quantitative accuracy of the model quickly deteriorates with vortex shedding suppression as noted already
in Ref. 3. Yet, all qualitative dynamics features remain intact and are found useful for design feedback flow
control strategies.19

9 of 11

American Institute of Aeronautics and Astronautics Paper 2004-2408



Similar Galerkin model studies have been carried out for the suppression of vortex shedding with oscil-
latory rotation of the cylinder. Cordier’s group13 has constructed a 40-dimensional Galerkin model for a
control design which was validated against simulation. The large dimension of the Karhunen-Loève decom-
position has intentionally been achieved using snapshots from an intriguing chirp-forcing transient over a
frequency range.

VIII. Conclusions

A Galerkin modelling toolbox is proposed for feedback control design. This toolbox comprises (i) a
pressure-term representation for open flows, (ii) a ‘subgrid’ turbulence representation for LES and high-
Reynolds number flows, (iii) non-equilibrium modes for transient dynamics and multiple operating conditions,
and (iv) actuation modes for boundary-imposed unsteadiness. These generalizations appear to be sufficient to
overcome shortcomings of the standard approach7 for a large class of simple flow configurations, as indicated
by the current investigation and by studies of many other groups.10,12,13,24,25

Part II19 exemplifies a feedback flow control application for the oscillating cylinder wake.
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