
Proceedings of the 42nd IEEE 
Conference on Decision and Control 
hlaui, Hawaii USA, December 2003 WeM10-4 

Control, Observation and Energy Regulation of Wake Flow Instabilities 

Johannes Gerhard, 
Mark  Pastoor and Marek Morzynski Bemd R. Noack and 

Gilead Tadmor Andreas Dillmann Rudibert King Inst. Combust. Engines & 
Electrical & Comp. Eng. Hermann-Foninger-Institute Measurement & Control Gr. Basics of Machine Design 
Northeastem University of Fluid Mechanics 

Boston, MA 02115, USA. Techn. Univ. Berlin and Plant Technology 
tadmor@ece.neu.edu St rak  des 17 l u n i  135 

D-10623 Berlin, Germany HardenbergstraDe 36a 

Institute for Process 

Techn. Univ. Berlin 

D-10623 Berlin, Germany 

Poznari Univ. Techn. 
ul. Piotrowo 3, 

PL 60-965 Poznati, Poland 

Abswact-A three-dimensional Galerkin model is used in feedback 
design to regulate the perturbation kinetic energ). in the flow around 
a cylinder. The objective may vary fmm stabilization in order to 

a single and a two degrees of freedom actuation, are considered. 
in the fomer case, the orientation of the force is fixed: f(x) = 

drag mixing The a,ul(x)+wUz(x), with fixed ai. This ansat2 ignores the residual 
field which is left out of the GM model. In the latter case, two 
identically stnlctured actuators will stimulate mutually olthogonal 
fields, f<(x), i = 1,2. A single or multiple point velocity field 
sensor (such as hot-wire anemometers), captured by the variable 
s, are postulated, located sufficiently far downstream and displaced 
from the axis of symmetry near the maximum of fluctuation energy. 

an oscillatory State pair and 
the mean flow. Given the model's simplicity, it is essential to maintain 
closed-loop dynamics close to the system's natural dynamic range which 
i s  represented by an invariant manifold and a natural fWUenr), adding 
a design constraint addressed in this note. 
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The complexity of computational fluid dynamics (CFD) models 
is a major hindrance to implementable feedback control (21. This 
note presents a benchmark design based on a very low order 
Galerkin model and highlights control design aspects peculiar to 
the use of such models. The regulation of  laminar vortex shedding 
behind a cylinder 'has been adopted as our benchmark control 
problem from the fluid flow community .L31- L61. The system is  
considered at the reference Reynolds number of 100 which is far 
above the laminar shedding regime's critical value of 47 (71 bur far 
below the transitional range in which three-dimensional instabilities 
characterize the flow 181. This paper is focused on the  control and 
system theoretic aspects. Model development issues are discussed in 
191, 1101 and we shall therefore be content here,with a brief review. 

Reduced order Galerkin models (GM) are widely used in fluid 
dynamics I I I I. Here, the GM utilizes an orthonormal' Galerkin 
approximation of the attractor 

where us(x) is the unstable steady Navier-Stokes solution and the 
Karhunen-LoeVe modes ui(x). i = 1,2,  capture some 96% of 
the perturbation energy o f  the von Kbrmbn oscillatory instability. 
Yet, a model based on these two modes alone cannot cdpture any 
of the system dynamics. That is the purpose of the .sh@ mode 
UB(X) LY us(x) - uo(x) which is an orthonormalized mean-fieid 
correction between the natural mean flow uo(x) and the steady 
solution. This shift mode resolves the energy exchange between the 
base flow and the oscillatory perturbation. Figure I depicts these 
four modes in terms of stream-lines. Actuation is effected with a 
local volume force, f(x), in the new-wake, thus mimicking, for 
instance, a Lorentz force in a magneto-hydrodynamical flow. Both 

'Signal norms With the subscript "2"). inner products and onhagmalily 
is understood in the appr~priate (spalial or temporal) L2 sense. Euclidean 
noms (with no subscript) and inner products are used for Euclidean veclors. 
To simplify notations, the hase flows uo and ug are nor normalized in ( I )  
and elsewhere 

-. 
.As will be seen below, velocity field transients are dominated by 
a single harmonic, which is therefore easily identifiable. Under 
slow variations in as( t )  (relative to the dominant period), residual 
effects of both the constant us and the slowly varying a3u3, can be 
removed by bmd-pass filtering. It is thus assumed that, excluding 
noise, the sensor reading s is a linear combination of a ,  and a?. 
Figure 2 depicts the system with a single actuator and a single 
sensor. 

Under this description, the Galerkin system is given by 

iL = A(a)n + Be, s = Ca (2) 

where a := [a,, az,  c is the actuation command, and 

P --w -On, 
A(a) := w p -flu.] [ sal sa2 - p  

(3) 

The coupling terms flu; and 6a; and the growth parameter p > 0 
are typically small relative to the natural oscillation frequency w 
and dissipation parameter p > 0. A single actuator is represented 
by a scalar c and B = b[cos(@), sin(@), 0Ir. Associated w,ith a 

double actuator, c := [<I,  C Z ] ~ ,  and B = b 

reflects the assumed orthogonal symmetry of the two volume force 
fields. The sensor coefficient for a single sensor is C = [CE, cz, 01. 
With multiple sensors, the matrix C will comprise several rows of 
a similar form. 

1 [ 0  0 

cos(@) -sin(@) 
sin(@) cos(6) 

The control task set folth is the design of feedback regulation of 
the perturbation kinetic energy, represented by K(1) = 0 .5 / /~ (1 )11~ ,  
about a set reference, K,. Stabilization o f  the reference K. = 0 is 
most commonly discussed, motivated by such objectives as reducing 
drag or mechanical vibrations. Enhancement of K beyond its open 
loop value may be motivated by a mixing objective. 

An energy regulation objective, respects the basic characteristics 
of the system's unactuated. oscillatory dynamics - as opposed to 
other setpoint or orbit tracking tasks. Indeed, an intrinsic limitation 
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Fig. 1. GderXin approximation. Themem-flow ug. thesteady solution us. 
theshift-modeus. andtheKarhunen-Ldvemodes UI. u2 are visualized(top 
to bottom) with stream-lines. 

of almost any reduced order model of a truly distributed and / 
or nonlinear system is its restriction to an often narrow envelope 
of State values and dynamic range. This cenainly applies as a 
generic aspect to any attempt at feedback control design based on 
reduced order models of fluid flow.systems. AS has been repeatedly 
demonstrated in other contexts, as well as in this very example, 
an aggressive and theoretically effective control that ignores such 
constraints can result with mode shifts that will render the Galerkin 
system and the reduced order model irrelevant, and lose its ef- 
fectiveness in the real system. A second, equally essential design 
objective, that is likely to characterize any control design in low 
order flow models, is therefore to maintain closed loop behavior 
near its natural range, and an analysis of the meaning of this 
objective is an important pan of the overall design task. 

hot-wire 
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Fip. 2. Stream-lines of the natural Row around a circular cylinder. T h e  
location of the volume force is illustrated by a circle and a single hot-wire 
anemometer is on one side of the van K t m h  vonex street. 

11. STATE FEEDBACK & CONSTRAINTS 
To belter understand the dynamics of (21, relative to energy 

regulation, it is useful to transition to polar coordinates [al. a2lT = 
[cos($), sin($)IT r,  whereby K = 0.5(y2 + za). In these terms 

In  the single actuator system, the terms g7 and gp are the scalars 
gT(d) = cos(8 - 6)  and gp($) = sin(8 - 6). In the dual actuator 
system, gr and gp are orthogonal vector valued, g.(@) = [cos(@ - 
$), - sin(8 - $)] and g p ( @ )  = jsin(8 - $), cos(@ - $)] (and the 
zero in the second row of the forcing term, in (4). is interpreted as 
the zero row, [0, 01). 

0) are now easy to 
see [ I ] :  Oscillations between a ,  and a2 are at the fixed frequency of 
w. Conceming energy dynamics, the origin, K = 0, is an unstable 
saddle point. A stable rest point for (4) exists at rz = $a3 = g, 
corresponding to a stable (phase-shift invariant) limit cycle, in (2). 
The magnitude gap between p and p, and weak coupling (e /3r 
and 6r small relative to p) translate to slow dynamics in r and 
much faster convergence of a3. This allows an approximation of the 
invariant manifold, connecting the unstable rest point and the limit 
cycle, based on time constant separation, with rapid convergence of 

De& guidelines, based on the desire to remain near the sys- 
tem's natural dynamic range, are derived from these characteristics. 
Roughly stated, they include: 

Characteristics of unactuated dynamics (6 

a3 to w. 

1) A restriction to slow changes in r,  and 
2) Small perturbation of the rofation frequency, 4 % w. 

Implications are analyzed separately in the single and dual actuator 
cases. 

The dual actuator case. A starting point is the observation that 
V$, gr($) I gp($) in Wz.,Thus, the objective to effect energy 
dynamics and avoid phase actuation, is easily achieved, orienting 
r ( t )  = g v ( $ ) r q ( t ) ,  with a scalar q( t ) .  Consequently, the actuated 
system becomes 

& = W  (7) 

Noting that the relation a3 = $r2 must be maintained at any 
steady state, a constant reference K. readily translates to references 
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r .  and a 3 .  = $T:,  satisfying K. = O.S(T: + ai.), and to a steady 
state control 

(81 r .  = gr($) q.; q. = (pas. - p)r./b 

This last equation reveals, in particular, one connection between 
actuation amplitude limits and performance limits. Performance 
Limits are further discussed later on. 

Denoting deviations from steady state by A, transient dynamics 
can be represented as 

T 

An incremental control, Ar = gT($)TAq. must be added to E., to 
stabilize the reference point. One increnientally dissiporive cmml 
design to attenuate the tracking error, i s  

1 
(10) A77 = ;((h* - P - & ) A T  + o m a s )  

where 6 > 0 is a design parameter. The feedback ( IO)  shapes closed 
loop error dynamics as a cascade 

Indeed, ( I O )  was selected to provide complete control of the rate 
of convergence in T in terms of the design parameter ti. Thus, ( I O )  
facilitates adherence to the requirement of slow convergence in r .  
To further impose an absolute bound over A?, one saturates KAT, 
in (IO). 

The single actuator case: A first approximation. The obvious 
disadvantage, here, is that now g.(,$) = cos(@ - ,$) and gp($) = 
sin(8-4) take scalar values, and cannot be instantaneously orthog- 
onal. Nonetheless, under nearly periodic dynamics (either due to 
low gain actuation, or deliberate design), these two coefficients are 
nearly Lz-orthogonal over a period. Actuation aimed to be restricted 
to energy dynamics, and to minimize effects on the phase, must 
therefore be in phase with g.($). and Lz - orthogonal tog,,($). 

A natural option that may come to mind is r = gr($)q. with a 
slowly varying q. Its advantage is in a smooth, nearly sinusoidal 
actuation force. Its main drawback is that i t  does not maximize 
available gain over a period. A second example, addressing the 
pain issue. is the nearly square wave. c = $sign(cos(B - 4 ) ) ~ .  
The respective forcing terms are then of the form bg,($)r = b ( l  + 
h 4 d ) ) q .  and bg,(@)r = bh,($)q, where h,($) and hp($)  are 
r e r c ~ n e a n  harmonic terms. Thus, here, bg,.c averages over a period 
to bq, and by,r, to zero. Equations (6 )  and (7) then provide a rough 
approximate dynamic model for period averages (upon which we 
improve below). The control policy (8)-(10) can then be used for 
the selection of q. 

Here i t  should be stressed that now the objective of imposing 
slow convergence in r is also necessary to maintain the rationale 
for the suggested policy, which hinges on the fact that the 
underlying dynamics is nearly periodic, hence that q is slowly 
%q”ng. Also noted are the following disadvantages of the single 
actuator. First, to achieve the Same (averaged effect), the peak 
magnitude of the actuation signal must be higher: in the dual 
actuator system 11g.cll = bIq/ ,  whereas in the single actuator 
system. gTr  = b;sign(cos(@ - $))q leads to a ratio of 26 : r - 
some 32% lower - between the peak amplitude of t and average 
value of g-r .  Actuation amplirude limitations therefore result with 
a more stringent effective gain limitation, in this case. A second 

disadvantage is due to the fact that, even though the desired energy 
level K., and the constraint $$ % w, are maintained an average, 
harmonics in the actuation terms necessarily imposes harmonic 
deviations from the set value in both. Harmonic distortions in the 
rotation frequency will grow in reverse propottion to a decline 
in T ,  due to the form of the forcing term in (3, although the 
significance of such harmonics distortions may then diminish, due 
to the same decline. 

Rein”. Our benchmark exhibits here two generic attributes of 
fluid flow control: dominant oscillatory structures and similar 
StrucNreS under actuation. Our selected approach, which too 
might prove to be of generic value (see also [ IZ],  1131). is a 
design aimed to control selected phasors (= Fourier coefficients) 
rather then instantaneous response, utilizing functions space (here, 
moving window L z )  geomeuy, rather than instantaneous Euclidean 
geometry, to effect designated variables, and avoid others. This 
approach hinges on maintaining near-periodicity. 

The single actuator: added details. For siinpliciv, defailed corn- 
purafions are presented for fhe case p = p = 6 = w = 1. 

There are two options in planning and scaling the actuation 
input for a period (or half a period) ahead: One option is to scale 
the amplitude of the actuation input; the other is to scale the time 
interval over which a non zero actuation is applied. Denoting by 
t c  the time where $ ( t c )  - 0 = (k - 0.5)r ,  in both cases we shall 
discuss a discrete time decision process, where control commands 
are issued at the time t c  for the interval [ t t , t h + l ]  (i.e., for the next 
interval over which cos($-@) maintains a constant sign). At nearly 
constant frequency, the step size remains At := t k + l  - t k  z x .  
Under this assumption we shall now explore the two scaling options. 

1. A scaled consranr acruation over a half period. The control 
input during the interval [ t k , t e + l ]  will be a constant, r k .  An 
approximation of ? ( & + I )  in terms of T ( & )  and tk can be obtained, 
substituting the term p - gas in (4) by the constant p k  = p - 
b 3 ( t k ) ,  and predicting t k + l  = t c  + ii. A straightforward solution 
of the resulting version of (4). reveals 

To obtain r ( t c + l )  = ur(tc), a E (0,l) .  one therefore sets 

The effect of this selection on the oscillation frequency of the 
yon KArm6n modes is captured by 

1 .  , $ = I - -  sin($ - @)cc 

Since the integration is w e r  an interval where 4 - @ traverses 
[(k - 0 . 5 ) ~ ,  (I; + 0 . 5 ) r ] ,  if one can ignore variations in l/r, 
the average impact on $4 will be small. However, these 
approximations will deteriorate for small values of r.  

2. A scaled period of actuation. Here we adopt a bang-bang conrml 
approach, whereby admissible values of t are 0 and *eo, and 

(14) 
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switching is determined by a control parameter, <k:  

Note that the advantage of this switching policy is that non zero 
actuation is concentrated near the points 4 - 0 = kx,  where the 
impact of the actuation signal on is minimal, while the impact 
on i. is maximal. 

Direct application of the variations of constants formula in the 
simplified (4). as was done above, leads to the approximation 

r(tk+l) zz emkrr( tk)  
+ emr(0 .5* -<k)  (sin(&) + pk cos(&)) (16) 

+ , ~ ~ i ( o . 5 - + ~ k )  (sin(Ck) - p k  cos(&)) 

The parameter c k  is selected so that r( tk+,)  = crr(tk), for 
a selected decay constant c E ( O , l ) ,  as above. While a 
closed form expression is not available for the dependence 
Ck(pk) = &(p  - as(&))  (once U is tixed), it can be easily 
computed and stored in a lwkup table. 

Limits due to actuation amplitude bounds. We have already made 
note of the ob\,ious way in which amplitude constraints on feasible 
values of q. translate to constraints on the feasibility of reference 
levels of K.. Additional constraints are due to transient input levels. 
Transients have to be analyzed since disturbance induced deviations 
from unstable reference points - brief as they might be - ought 
to be expected. We shall be content with comments on the case 
K ,  = 0 (stabilization), as other cases are analyzed similarly. Here, 
(LJ. = r. = q. = 0 and thus r = AT, a3 = Aa, and q = Aq. 
Appealing again to the approximation a3 1̂ $7’ (based on time 
constant separation), (IO) becomes 

evaluated over the range 

may be used to analyzed 
the transient from the amactor to the 

the feasibility of maintaining the system at any other reference point 
for K ,  under acNation amplitude constraints. 

111. Onsenvcn DESIGN 

Observer-based conuol combines a state feedback scheme, as 
described above, and a state estimate, which is the topic of this 
section. 
A Single Sensor Observer Design. The sensor signal is s ( t )  = 
Ca = c l a l ( t )  + czaz(t). A simple rotation in the subspace 
sp {a l ,  a , }  leaves the structure of (2) intact, but brings the coeffi- 
cient C to the form C = [E,, 0, 01. We therefore continue without 
any loss of generality, discussing only the case where c1 > 0 and 
cz = 0. This amounts to direct measurement of al.  

Observer design begins with (2) and a yet undetermined correc- 
tion vector d 

II -U -Pal d ,  

A dynamic model for the propagation of the estimation error, A a  := 
a - ii, linearized near Aa = 0 is 

Available information is the measured error Aa1, meming that the 
t int  column in the matrix coefficient, in (19). can be freely assigned. 
Explicitly, our selection is 

-2K - p 

n26a, 
h =  [ K’W ] Aa, (20) 

where K > 0 is the design parameter. Under this selection, (19) 
becomes 

- 2 K - p  --W 

2K26a1 26zz - p  

d 
= 

To clarify the effect of this form, consider the dynamics of the 
weighted error E = [Aa,, &Aa3IT. (Equivalently, 
consider (21) with the stored energy defined as A E  := 0.5(Aa: + 
5A.q + &Ad).)  

1 - 2 K - p  --IQ -&%KEi d 
= [ KW p-:3 -&%E2 (22)  

m K E 1  -2 - P  

where the off-diagonal terms in the mamx coefficient define a 
skew symmetric matrix, meaning that the dynamics they create is 
conservative. Since the diagonal contains both negative and positive 
terms, stability is not immediate. The following is a heuristic 
argument, beginning with the top left 2 x 2 block. By selecting 
K sufficiently large, terms in p and p - can be considered 
as small perturbations, and stability properties can be deduced 
from stability propenies of the time invariant matrix where these 

terms are eliminated R 1. This block is uniformly 

exponentially stable with two eigenvalues placed at -n. Moreover, 
it is dissipative relative to the Euclidean norm of the state. As 
the autonomous dynamics of b is dissipative and energy exchange 
between [El,E2lT and E3 is conservative, the combined system is 
stable. 

The tradeoff in selecting a large observer gain should not be 
overlooked, however: in addition to basic considerations of avoiding 
amplitication of sensor noise, it is noted that the energy construct 
for estimation errors discounts the unknown ermrs in E2 and 23, as 
they are divided by IC. 

A second approach that we mention only very briefly, is similar 
to the one elaborated in 1131. Maintaining the ‘bear periodicity” 
assumption, the dynamics of a1 is nearly sinusoidal with a slowly 
varying amplitude, A simple extended Kalman tilter readily 
translates measurements of a, into estimates of both its amplitude 
r and phase $. All that is left, now, is to estimate the slowly 
varying a3 based on the estimated r and 4. A crude estimate 
would be E3 = f?’. An altemative is to proceed with the “multiple 
sensor observer’’ below, to estimate a3. 

Multiple Sensors Ohsewen.  Here we assume the presence of two 

[ -; 
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or more sensors, hence C has the form 

r cl, c12 o 1 

If sensors are placed so that the column rank of C is 2, the vector 
[al, azIT can be recovered (or least-mean-squares estimated) from 
s. This means both that the very need for a dynamic observer is 
greatly reduced and that observer design can be simpler. Indeed, 
only a3 now needs to be estimated and, in fact, an observer 
i s  altogether redundant if only bong-bang feedback control is 
implemented. 

Having a measurement of both a, and az implies, in particular, 
a measurement of T, and the observer will be based on the slow 
dynamics of (4). 

Since we use the measured value of r, the estimator has a linear 
parameter varying structure and a correspondingly simple error 
dynamics 

The correction term, modifying the first column in the “A” matrix, 
can be selected as 

d = [  G ; T ] a T  (26) 

leading to the closed loop dynamics 

d AT 
T [ aaa 3 = [ -!; ] [ E ] (27) 

It is easily observed that this system is strictly dissipative relative to 
the storage function A E  = 0.5(XZAr2 + Aa?), hence uniformly 
exponentially stable. Concerning design parameter assignments, if 
the reference T* # 0 then values of U and X can be balanced 
to place the two eigewalues of (25) at the same, desired location 
(i.e., determining a single convergence time constant). If T* = ‘ O ,  
the ability to manipulate convergence rate diminishes as T c 0. A 
selection of design parameters can thus be guided by pole placement 
at a point away from the target, such as at an anticipated initial point 
of the control taqk (ray, at the stable limit cycle). 

Open and closed Imp  trajectories are depicted i n  Figure 3. 

IV. CONCI.UIIING REMARKS 

The benchmark discussed in this note features several generic 
aspects of \\,hat is hopefully evolving into a viable methodology 
of loworder. model-based feedback design in fluid flow systems. 
The reduced-order model is focused on large coherent structures, 
dominated by rotating modes as well as an added physics-based 
(shift) mode. The combination of standard proper orthogonal de- 
composition (POD) methods [ l l I and physical insight enables to 
capture a large proportion of the perturbation energy over a dynamic 
range that includes the transients of interest (as opposed to the 
common focus on a single operating point). Nonetheless, the model 
is still restricted to a relatively narrow envelope, which control 
and observer design must respect - and may wisely utilize. In 
the example at hand, that envelope i s  characterized by a fixed 
roration frequency and slow variations in the kinetic energy level of 
the perturbation SigXdl. Even in the case of a single actuator, this 
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Fig. 3. Natural and controlled IranSients in state space. The natural and 
controlled trajectories are shown as solid, blue line (-) and dashed, red 
line actuated (- -). Evidently, bath transients stag on the same paraboloid: 
the natural transient leaves the fixed point whereupon the control transient 
approaches the fixed point. 

periodicity enables to achieve function space orientation, directed at 
phenomena we wish to control (energy level), and avoiding those we 
wish to leave unaffected (phase dynamics). The fact that Galerkin 
models are based on quadratic Hamiltonian dynamics is reflected 
by the relative ease at which incrementally dissipative design can 
address both control and observation. Moreover, as noted (without 
elaboration), an even simpler dynamic observer is feasible, based 
on an’extended Kalman filter tracking of a nearly sinusoidal sensed 
signal. This kind of harmonic tracking observers seem to be natural 
in diverse examples, and have been previously applied in vortex 
systems, as well. 

In closing, it is noted that spatial mode shift, that is, a drift 
from u.(x) to U;(. - v). with an unknown local XO. is an 
observed phenomenon in the wake flow, especially, under aggressive 
actuation. An additional. potential advantage and an interesting 
topic for further research is the possibility to utilize multiple sensor 
measurements to estimates xg and make appropriate corrections in 
the actuation. 
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