
doi: 10.1098/rsta.2010.0367
, 1513-1524369 2011 Phil. Trans. R. Soc. A

 
Jean-Paul Bonnet and Marek Morzynski
Gilead Tadmor, Oliver Lehmann, Bernd R. Noack, Laurent Cordier, Joël Delville,
 
control
Reduced-order models for closed-loop wake
 
 

References
l.html#ref-list-1
http://rsta.royalsocietypublishing.org/content/369/1940/1513.ful

 This article cites 26 articles

Rapid response
1940/1513
http://rsta.royalsocietypublishing.org/letters/submit/roypta;369/

 Respond to this article

Subject collections

 (173 articles)fluid mechanics   �
 (171 articles)mechanical engineering   �

 
collections
Articles on similar topics can be found in the following

Email alerting service  herein the box at the top right-hand corner of the article or click 
Receive free email alerts when new articles cite this article - sign up

 http://rsta.royalsocietypublishing.org/subscriptions
 go to: Phil. Trans. R. Soc. ATo subscribe to 

This journal is © 2011 The Royal Society

 on March 7, 2011rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/content/369/1940/1513.full.html#ref-list-1
http://rsta.royalsocietypublishing.org/letters/submit/roypta;369/1940/1513
http://rsta.royalsocietypublishing.org/cgi/collection/mechanical_engineering
http://rsta.royalsocietypublishing.org/cgi/collection/fluid_mechanics
http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;369/1940/1513&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/369/1940/1513.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/


Phil. Trans. R. Soc. A (2011) 369, 1513–1524
doi:10.1098/rsta.2010.0367

Reduced-order models for closed-loop
wake control

BY GILEAD TADMOR1,*, OLIVER LEHMANN1, BERND R. NOACK2,
LAURENT CORDIER2, JOËL DELVILLE2, JEAN-PAUL BONNET2

AND MAREK MORZYŃSKI3
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We review a strategy for low- and least-order Galerkin models suitable for the design
of closed-loop stabilization of wakes. These low-order models are based on a fixed set of
dominant coherent structures and tend to be incurably fragile owing to two challenges.
Firstly, they miss the important stabilizing effects of interactions with the base flow and
stochastic fluctuations. Secondly, their range of validity is restricted by ignoring mode
deformations during natural and actuated transients. We address the first challenge by
including shift mode(s) and nonlinear turbulence models. The resulting robust least-order
model lives on an inertial manifold, which links slow variations in the base flow and
coherent and stochastic fluctuation amplitudes. The second challenge, the deformation
of coherent structures, is addressed by parameter-dependent modes, allowing smooth
transitions between operating conditions. Now, the Galerkin model lives on a refined
manifold incorporating mode deformations. Control design is a simple corollary of the
distilled model structure. We illustrate the modelling path for actuated wake flows.

Keywords: reduced-order model; Galerkin models on manifolds; finite-time thermodynamics
closure; control design; bluff-body wakes

1. Introduction

Flow control affects a remarkably broad scope and range of scales of engineered
systems, from microfluidic devices to energy and transportation systems.
Potential benefits can reach epic proportions. Closed-loop control is an enabler for
higher efficiency over a broader operational envelope than passive and open-loop
actuation and is essential for disturbance rejection.

*Author for correspondence (tadmor@ece.neu.edu).

One contribution of 15 to a Theme Issue ‘Flow-control approaches to drag reduction in
aerodynamics: progress and prospects’.
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As in other feedback control applications, modelling the physical mechanisms
and control laws is a critical component of the design task. The tension between
the complexity and nonlinearity of the general description by the Navier–
Stokes equation (NSE), and the simplicity and robustness needs of design and
implementation make the identification of reduced-order models (ROMs) of
turbulent flows particularly challenging. Here, we describe a unifying framework
to address three aspects of this challenge: modelling (i) the dissipative effects
of neglected small scales, (ii) the stabilizing effects of ignored variations in the
base flow, and (iii) the dynamic deformation of dominant flow structures. For
reasons of clarity and simplicity, the two-dimensional flow in the wake of a
circular cylinder at Re = 100 is used as the driving benchmark. The issues raised
for model-based control in this simple example prevail in the transitional and
turbulent regimes.

The paper is organized as follows. The triple decomposition perspective of
Galerkin models is discussed in §2. This includes a review of least-order Galerkin
models, from simple oscillatory to complex broadband frequency dynamics. In §3,
we describe control-oriented wake models. In §4, we introduce the concept of
Galerkin models on manifolds to account for dynamic mode deformations. The
control view of mode deformation and of the proposed solution is discussed in §5.
Our conclusion and perspective are summarized in §6.

2. The triple decomposition

Low-order Galerkin models are expressly designed to resolve few key coherent
structures, and ignore large portions of the frequency and wavenumber spectrum.
This objective is conceptualized in terms of the triple decomposition

u(x, t) = uB(x, t)︸ ︷︷ ︸
u � uc

+ uC(x, t)︸ ︷︷ ︸
u ∼ uc

+ uS(x, t)︸ ︷︷ ︸
u � uc

. (2.1)

Here, uB, uC and uS denote the slowly varying base flow, coherent structures and
the remaining small scales, at oscillation frequencies u � uc, u ∼ uc and u � uc,
respectively. Concrete definitions of the dominant frequency uc and uB, uC and
uS can be made in terms of the Fourier transform of the velocity field (see §4c).
The purpose of the dynamical model is to resolve uC.

(a) Coherent structures at dominant frequencies

The Galerkin expansion is defined by a small set of space-dependent modes
{ui}Ni=1 and time coefficients {ai(t)}Ni=1,

u(x, t) ≈ uB(x) + uC(x, t) ≈ uB(x) +
N∑

i=1

ai(t)ui(x). (2.2)

For simplicity, we consider the simplest case in which the base flow is time-
independent, e.g. the steady Navier–Stokes solution. A dynamical system,
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governing the evolution of the time coefficients ai , is ideally obtained by the
projection of the (actuated) NSE on the subspace spanned by equation (2.2),

ȧi = ci +
N∑

j=1

lijaj +
N∑

j ,k=1

qijkajak + fi , i = 1, . . . , N . (2.3)

Here, ci , lij and qijk are coefficients associated with the unactuated dynamics and
fi is the modal component of a forcing term.

The ingredients of a successful model are geared to guarantee both the quality
of the kinematic approximation by equation (2.2) and the dynamic predictive
power of equation (2.3). Mode-set selection is critical to both objectives. Empirical
representations based on flow snapshots have the advantage of relatively easy
computations and high resolution. The proper orthogonal decomposition (POD)
minimizes the time-averaged residual of equation (2.2) [1]. Koopman, dynamic
mode decomposition (DMD) [2,3] and temporal harmonic [4,5] modes extract
individual frequencies. Balanced POD (BPOD) [6] extracts modes from dynamic,
albeit linear, input–output considerations.

Kinematic resolution is all too often insufficient for a successful dynamic model.
Some remedies include augmented expansion sets, revisited in §4, and calibration
methods [7]. Here, we overview issues stemming from ignoring the dynamic roles
of uB and uS, followed by least-order realizations, in §3.

(b) Base flow–low frequencies

The bilateral interaction between mean flow variations and unsteady
fluctuations is essential to flow physics. Fluctuations affect the mean flow via
the Reynolds stress, and mean flow variations affect the stability of fluctuations,
with reduced production at higher fluctuation levels. ROM should therefore
incorporate a mean-field representation as a key stabilizer. Lacking such a
representation may lead to fragile models and inaccurate predictions, whereas
adding a single shift mode to equation (2.2) may offer an ample solution [5,8].
An alternative for homogeneous coordinates is the computation of uB by the
projection of the Reynolds equation on equation (2.2), feeding that base flow into
the Galerkin system [9–11], thus adding a stabilizing cubic term. Both approaches
effectively restrict the dynamics to an inertial manifold, whether in the NSE or
in the Galerkin subspace.

(c) Small-scale fluctuations–high frequencies

Energy transfer from uC to uS is another essential stabilizing mechanism.
Models range from a single eddy viscosity [9], modal eddy viscosities [12]
to calibrated linear [13] and higher order terms. Noack et al. [14] explain
frequent difficulties with calibrated linear terms by incompatibility with the
nonlinear transfer mechanism and suggest a nonlinear finite time thermodynamics
(FTT)-based closure, tested for simple oscillatory to broadband dynamics.

Additionally, uS may contribute to dynamically essential high-frequency
fluctuations in equation (2.3). Meteorological and some fluid-dynamical models
represent this effect by white noise. Improved representations employ random
time series that mimic the spectral distributions of POD expansions of uS,
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whether measured or hypothesized a priori, e.g. from a modified von Kármán
spectrum [15]. An alternative is to employ stochastic models that realize a
postulated scaling law for the energy level li of the ith POD mode. Examples
are an observed li ∝ i−11/9 scaling for the POD eigenvalues in inhomogeneous
turbulent flows [16], and linking the frequency u to the POD mode index
i : u ∝ i−b. As in FTT models, these representations do not resolve phase
relationships.

3. Least-order Galerkin models

(a) Mean-field and turbulence models: single-frequency dynamics

A least-order model, i.e. one that captures dominant fluctuations with the least
state space dimension, may resolve (i) changes in uB between the steady solution
us and the attractor’s mean, u0, using a normalized shift mode uD ∝ u0 − us,
and approximating uB = us + aDuD, (ii) an oscillatory mode pair, in uC = a1u1 +
a2u2 ≈ An(cos(f)u1 + sin(f)u2), and (iii) higher harmonics, aggregated in uS.
The resulting triple decomposition is characterized by the natural oscillation
amplitude, An, the frequency, u = df/dt, and the shift-mode amplitude, aD,
and reads

u = us + aDuD︸ ︷︷ ︸
uB

+ a1u1 + a2u2︸ ︷︷ ︸
uC

+ uS︸︷︷︸
higher harmonics

. (3.1)

Following [8], the Galerkin system (2.3) is simplified to
d
dt

a1 = sa1 − ua2, (3.2a)

d
dt

a2 = sa2 + ua1 (3.2b)

and
d
dt

aD = −sDaD + c(a2
1 + a2

2), (3.2c)

where s = s1 − b�
DaD − b�

SA
2
n and u = u1 + g�

DaD. The Galerkin expansion (3.1) is
a realization of the triple decomposition (2.1) for an oscillatory flow. The growth
rate s and frequency u in the Galerkin system (3.2a) and (3.2b) are composed of
three components. The first, with s1, u1, describes the linear instability (aD = 0).
The aD-dependent terms b�

DaD and g�
DaD characterize the effect of mean-field

deformation. The third term, b�
SA

2
n, represents the energy-transfer rate, from

resolved to higher harmonics, slaving ‖uS‖ to A2
n. This dynamical system has

been derived from an FTT closure [17] incorporating mean-field theory (see [14]
for details).

A centre-manifold-type approximation of the actuated system, i.e. slaving aD

to A2
n and adding a forcing term, yields a Landau equation for the amplitude An,

dAn

dt
= s1An − bDA3

n − bSA3
n + f . (3.3)

Here, s1An, −bDA3
n and −bSA3

n represent the instability of uC, and the stabilizing
effects of low frequencies in uB and high frequencies in uS, respectively. The
key observation is that a viable homogeneous model is impossible without
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Figure 1. Principal sketch of the transient wake dynamics (for details see text).

the nonlinear stabilizing terms. Figure 1 illustrates the manifold aD ∝ A2 and the
related flow states. It also illustrates mode deformations along transients, which
we will discuss in §4. A properly designed oscillatory feedback (see §5) yields
f ∝ −A in a stabilizing opposition control, akin to those employed in numerous
wake and cavity control studies [18,19].

(b) Mean-field and turbulence models: multiple frequencies dynamics

Synchronizing control with state oscillations may become impractical, and
design may use the stabilizing effect of high- or low-frequency actuation [20,21].
A least-order model in a two-frequency example contains three ingredients
generalizing §3a: (i) a base flow uB = u2

0 + aDuD, now defining uD ∝ ua
0 − un

0,
connecting the natural and the actuated mean flows, un

0 and ua
0, (ii) a four-mode

counterpart of the single frequency uC with the natural and actuated frequencies,
un and ua, and oscillation amplitudes An and Aa, and (iii) the high-frequency
residual uS. The resulting coupled dynamics obey

dAn

dt
= snAn and

dAa

dt
= saAa + B cos(f − f0). (3.4)

Here, sa < 0 is the damping at ua, and, as in equation (3.3), sn = sn1 −
bnnA2

n − bnaA2
a. Unactuated, Aa ≡ 0 and equation (3.4) becomes equation (3.3).

A mechanism we identified in wakes and high-lift configurations [21] is the reduced
production of natural fluctuations, hence sn < 0 and the attenuation of An, once
the mean field is modified by the Reynolds stress owing to actuated oscillations
at large Aa. Again, a compelling case is made for the essential roles of nonlinear
mean-field and turbulence representations, structurally rooted in the NSE.

(c) Intermediate frequency band dynamics and richer mode sets

Models based on few distinct frequencies and modes are feasible when operating
conditions are narrowly defined. Model coefficients can then be calibrated, e.g. by
Tikhonov methods [7]. The deforming effects of actuation and long transients on
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leading flow structures, an issue we discuss in §4, require richer expansion sets.
Computationally demanding robust design addresses uncertainty with ensemble-
based methods [22]. Alternatively, an optimally representative POD database
is created by sophisticated sampling of the control parameter space [23]. In a
simpler scheme, considerable computational savings are also achievable when
POD bases are derived from transients driven by an amply rich, frequency-varying
excitation: a mere 40-mode expansion was used to determine the optimal control
that minimizes the mean drag for a cylinder wake configuration [24]. This model
covers 98 per cent of the total fluctuation kinetic energy (TKE) throughout the
investigated regime.

(d) Broadband dynamics

Generally applicable model reduction methods are incapable in resolving
the complex interplay of a large ensemble of nearly equally important
modes. Successful examples invariantly focus on simpler dynamics in invariant
subspaces. Examples include highly symmetric flows [1], and the most observable
decomposition (MOD), optimizing the resolution of the control goal for turbulent
jet noise [25]. Likewise, the BPOD [6] exploits (linear) input–output dynamics
for relevant subspace identification. Otherwise, successful flow control relies
on models and actuation that require only the slowly varying bulk statistical
properties of the flow.

4. Galerkin models with deformable modes

(a) Evolving coherent structures, the need and modelling options

Figures 1 and 2 illustrate mode deformations over significant transients, and the
resulting deteriorated model resolution, away from nominal conditions. Remedies
include: (i) augmented mode sets derived from transients, multiple datasets (see
figure 2), Navier–Stokes residuals and sensitivity analysis [26–28], (ii) online
adaptation [29,30], and (iii) pre-computed interpolated bases, which is the topic of
this section [31,32].

The rationale for adaptation, in (ii) or (iii), is the dimensional gap between
local and global approximations: a persistent 95 per cent TKE transient resolution
requires an 11-mode global basis. Figure 2 demonstrates the same resolution with
only three deformable modes. This ratio worsens for wider operational envelopes.

(b) Mode deformation: the manifold embedding view

We use a measurable variable, a ∈ A, to reflect the slowly varying operating
point, and use it to parametrize the base flow uB = ua

0 and expansion modes
{ua

i }Ni=1, at that point. In addition to state attributes (e.g. the TKE, estimated
from sensor input), a may reflect exogenous effects, e.g. unsteady boundary
conditions and actuation. The parametrized Galerkin expansion embeds the flow
state in an approximate inertial manifold [33,34],

u(x, t) ≈ ua
0(x, t) +

N∑
i=1

ai(t)ua
i (x). (4.1a)

Phil. Trans. R. Soc. A (2011)
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Figure 2. TKE resolution by several Galerkin expansions, during the cylinder wake’s natural
transient. The resolution is normalized with the instantaneous fluctuation energy. All
approximations include the shift mode and two or four other oscillatory modes. One approximation
(dashed line) uses the unstable eigenmodes of the NSE linearization at us. An excellent early
transient approximation is severely deteriorated towards the attractor. The reverse trend is
observed for an expansion employing only the first two POD modes (solid line). A hybrid five-
state model (dash-dot line) includes POD and stability modes, leading to significant improvement
when compared with the previous expansions. Persistently the best resolution is obtained with a
single, parametrized harmonic mode-pair (solid line with triangles) that deforms with changes in
the operating point.

The Galerkin projection of the NSE now includes terms owing to modal
time derivatives, vaua

i da/dt, i = 0, . . . , N , in equation (4.1a). This expands
equation (2.3) to

ȧi = ca
0,i +

N∑
j=1

la
0,ijaj +

N∑
j ,k=1

qa
0,ijkajak +

⎛
⎝ca

1,i +
N∑

j=1

la
1,ijaj

⎞
⎠ ȧ + fi , i = 1, . . . , N .

(4.1b)
With ua

i in the L2(U) unit sphere, gradient orthogonality, vaua
k ⊥ ua

k , can be used
in an analytical computation of the deformation path, as an alternative to the
empirical derivation suggested in §4c (see [35]). The ȧ-dependent global force
field is a new representation of the impact of rapidly changing flow conditions,
while remaining small during generic slower transients.

(c) Parametrization and harmonic modes

A method to derive expansion sets amenable to smooth, short-path
parametrizations is a basic ingredient of the outlined framework. Linear (including
geodesic) interpolation of POD modes [31,32] is a natural option. An effective
variant for harmonically dominated flows is to compute equation (4.1a) as
an a-dependent harmonic expansion (allowing incommensurate frequencies!),
where the modes are evaluated as slowly varying, spatially distributed, temporal
Fourier coefficients over a moving window I (t) = [t − 1

2T , t + 1
2T ] [4,5]. The

instantaneous frequency is estimated, e.g. by analysing velocity trajectories
over a small subdomain, Uf ⊂ U, where the sought harmonic is known to be
prominent. This approach implicitly resolves the otherwise delicate issue of
optimal alignment of ua

k for varying a. An efficient parametrization of each {ua
k }a∈A
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Figure 3. Parametrized Galerkin model evaluation. (a–c) Transient values of the growth rate
s = (dAn/dt)/An ((a), solid line) are in good agreement with values of s = s1 − bDaD, as obtained
by the Galerkin projection over the parametrized modes at the respective values of a. (b,c) The
corresponding Galerkin projection values of s1 and bD. (d–f ) Transient values of the oscillation
frequency ((d), solid line) are in good agreement with the Galerkin model predictions of u =
u1 − gDaD. (e,f ) The Galerkin projection values of u1 and gD. Operating points are parametrized
by a := A1.5

n / max(A1.5
n ).

is achieved by POD analysis, not unlike the double POD (DPOD) method [36].
The significant departure from augmented mode set approaches, like the DPOD,
is that the a-parametrization is purely kinematic, adding no dynamic state.
This organic outgrowth of the frequency-centred triple decomposition perspective
was instrumental in unveiling the Navier–Stokes foundations of the generalized
mean-field model in Luchtenburg et al. [21] and Tadmor et al. [5].

Figure 3 illustrates the dynamic quality of the parametrized model (4.1), where
a := A1.5

n / max(A1.5
n ) parametrizes the operating point.1 The figure compares

evaluations of the instantaneous exponential growth rate, s = (dAn/dt)/An,
and of the shedding frequency, u, from the transient Navier–Stokes state with
s1 − bDaD and u1 − gDaD from Galerkin projections on the parametrized least-
order expansion (i.e. ua

i , i = 0, 1, 2, spanning uC and uB), at 10 values of a (dots).
The remarkable match with the Navier–Stokes simulation is a testimony to the
validity and value of a parametrized least-order model. A small residual reflects
the need for a turbulence model and the effects of the phase lag in the transient aD.
The base flow and modes are parametrized by very smooth interpolation of four
velocity fields for ua

D := ua
0 − us, and three fields each, for ui , i = 1, 2 (not shown).

5. Feedback wake stabilization

The cylinder wake flow, actuated by a local, oscillatory body force, is a simple
illustration. The body force is modulated by the control command b(t) =
B cos(f(t) + q), with slowly varying B and q, defining the control command.
The forcing term in the amplitude equation (3.3) then includes a negligible
second harmonic component, and the slowly varying fdc = gB cos(q), where g is
a gain [18]. Critical observations on an effective feedback actuation are derived
from this formulation: (i) the values of q and of the state oscillation phase, f,
1The TKE A2

n/2 or An would work as well. The 1.5 power is used merely for plot clarity.
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Figure 4. The oscillation phase shift of the optimally stabilizing actuation (dashed arrow) and of a
sensor signal (solid arrow) are defined relative to the phase of the oscillatory flow, which is always
represented by the bold arrow pointing at 0◦. The four plots represent four states between the
steady solution us (left) and the natural attractor (right). The actuation phase shift is 0◦ in the
left plot. The optimal phase shift between the oscillatory actuation command and sensor signal
varies from over +180◦ (left) to about −40◦ (right), illustrating the need for continuous model
adjustment for successful stabilization.
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Figure 5. The critical |fdc|-level necessary to balance the natural destabilizing force (solid line). The
same actuation level (horizontal dashed line) matches the critical level at two points: a dynamically
stable point (right), at higher oscillation amplitude, and an unstable point, at lower oscillation
amplitude (left).

need to be accurately evaluated to determine a stabilizing actuation, i.e. fdc < 0;
an incorrect evaluation may lead to a destabilizing fdc > 0; (ii) likewise, a realistic
sensor-based feedback must correctly assess the phase shift between sensor signal
oscillations and the oscillatory state; (iii) B must be sufficiently large to make
(s1 − bDA2 − bSA2)A + fdc < 0, but not too large, to avoid driving the flow away
from the model’s validity envelope.

Concerning (i) and (ii), figure 4 shows the changes in the required phase shift
between sensor and actuator oscillations, as the flow is driven from the attractor
towards us. These changes cannot be predicted by a model using a single, fixed
mode set, leading to poor performance [18]. It is dramatically improved by simple,
parametrized model-based look-up table feedback [37]. In Noack et al. [14], we
discuss the instability of phase observers, as An subsides.

Concerning (iii), figure 5 depicts the critical amplitude of fdc, as read from
the a-dependent cubic polynomial condition (s1 − bDA2 − bSA2)A + fdc = 0. The
dashed horizontal line illustrates the fact that the same actuation amplitude fits
two operating points, where it crosses the critical amplitude curve. The right
crossing is at a dynamically stable point, whereas the left one, reflecting a lower
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oscillation amplitude, is unstable, revealing an inherent performance limitation
and explaining observed transitions to closed-loop limit cycles when An, hence a,
crosses the critical value where |fdc| peaks.

6. Concluding remarks

We reviewed intrinsic challenges to robust low- and least-order models for wake
stabilization, and outlined a unified framework that identifies and aims to remove
the root causes of these stumbling blocks. Concepts of state partitioning by
temporal frequencies and spatial length scales permeate the discussion: the triple
decomposition frames the need to account for—rather than resolve—the dynamic
impact of neglected small and large scales. Finite-time thermodynamics and
generalized mean-field theory, derived from first principles, provide the tools to
address these issues. Simple and robust, low-order manifold embedding resolves
the deformation of modelled coherent structures, as flow conditions change. This
is an attractive alternative to the complexity and potential numerical sensitivity
of using the entire geometric aggregate of the local models, throughout the
operational envelope. Here, too, the role of harmonic expansions is central. Wake
flow stabilization is used to illustrate the criticality of the parametrized model, as
well as the power of the simplest, least-order model, when endowed with an ample
representation of neglected length scales. Follow-up and complementary details in
Noack et al. [14] concern concrete representation formalisms for boundary forcing
(by disturbance of actuation), including unsteady acceleration and velocity fields
across the boundary and forced and aeroelastic wall deformation.
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